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Abstract

From schools of fish to flocks of birds and herds of wildebeest, the movements of
many organisms are characterised by emergent phenomena known as collective
movements. These complex group-level behaviours result from simple interactions
between individuals. To the naked eye, bacterial colonies appear to be static
structures. It might be hard to believe then that collective movements could have
any relevance for microbial life. Yet at the microscopic level, many of the same
collective phenomena also emerge within microbial systems. In this thesis, I study
the collective movements of the opportunistic pathogen Pseudomonas aeruginosa
in growing colonies. P. aeruginosa crawls over surfaces by employing twitching
motility, utilizing hair-like filaments known as Type-IV Pili to pull itself forwards.
Through a combination of novel experimental and theoretical approaches, as well
as a novel cell-tracking package called FAST, I demonstrate that cells at the edge
of P. aeruginosa colonies form an active nematic. This class of active matter is
characterised by higher-order structures known as topological defects, points where
cells with differing orientations meet one another. Two types of defect exist in
active nematics: comets and trefoils.

Characterisation of a mutant that lacks the pilH gene, a key regulator of twitching
motility, reveals that it moves much more quickly than the wild-type. Intuitively,
it might be expected that this faster single-cell movement would translate into an
increased rate of migration into new territory by the ∆pilH cell type. However,
experiments reveal that the wild-type is able to collectively migrate much more
quickly than ∆pilH , allowing it to outcompete the mutant in mixed colonies. This
disconnect between single-cell and collective behaviours is shown to be caused by a
mechanism related to the system’s status as an active nematic. In the first stage,
topological defects organise the segregation of the two populations, with wild-type
cells accumulating at trefoil defects and ∆pilH cells accumulating at comet defects.
Collisions between the ∆pilH -enriched comets then cause the cells inside to rotate
vertically, trapping them in place and preventing their migration to the colony
edge. Wild-type cells avoid this phenomenon by moving slowly and prudently,
allowing them to collectively migrate at a much faster rate than ∆pilH . Together,
these results demonstrate the intimate interplay between collective motility and
evolutionary dynamics in bacterial communities.
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Mass, time, magnetic moment, the unconscious: we
have grown up with these symbolic concepts, so that
we are startled to be told that man had once to create
them for himself. He had indeed, and he has: for
mass is not an intuition in the muscle, and time is
not bought ready-made at the watchmaker’s.

— Jacob Bronowski, Science and Human Values

1
Introduction

Movement is a near universal quality of living systems, intimately associated with

the survival and success of organisms. Across all branches of life, organisms do not

passively accept their fate by remaining fixed in place. Trees bend towards sunlight,

animals seek mates and fungi search for decaying matter to feed upon. Organisms are

constantly asking themselves where life may be better, and how they can get there.

Of course, no individual remains in a state of perfect isolation as it moves.

There will be others in their environment, often with similar goals. The presence

of these other moving organisms will have two effects: Firstly, if the collection of

moving organisms becomes dense enough, collective behaviours will begin to

emerge within the system. These are large-scale physical phenomena that arise when

the movements of spatially close individuals become correlated [1]. Examples of

collective behaviours include the selection of a single, coherent direction of movement

by groups of locusts [2] and the coordination of flocks of starlings in response to

external attack [3]. Secondly, organisms will begin to interact directly with each

other. A given individual may, for example, perform an action that is beneficial to

both itself and another (e.g. the interaction between cleaner fish and their clients),

or it may perform an action that is beneficial to itself and harmful to another (e.g.

predation or parasitism). These interactions will be sculpted by social evolution.
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Evolution and collective motion are generally studied separately. Yet collec-

tive behaviours occur, almost by definition, in systems composed of interacting

individuals. We might reasonably expect therefore that the collective behaviours

that emerge in a system of organisms would impact their social interactions, and

that the resulting evolutionary forces would change the collective behaviour of

the system by shaping the behaviours of the composing organisms. Unfortunately,

this interplay between evolution and collective behaviour is difficult to study in

macroscopic settings such as animal herds, which has typically limited its study

to theoretical treatments [4, 5].

Biofilms are dense communities of surface-associated microbes, which typically

surround themselves with secreted extracellular polymers [32]. They are ubiquitous

structures, by some estimates representing over 90% of the total biomass of bacteria

in the wild [8]. This, along with the close apposition of individuals within them, has

made biofilms attractive systems for experimentally investigating the evolutionary

dynamics of social interactions [6, 7]. One example, the Pseudomonas aeruginosa

monolayer, is a universe of movement in miniature, forming a single layer of

cells tightly packed together at the edge of an expanding biofilm [9]. Expansion

of the colony and movement within the monolayer is mediated by twitching

motility, a peculiar but wide-spread form of bacterial motion that permits migration

across surfaces. In this thesis I will use this system as a model of both collective

motion and evolution, with the aim of understanding the connection between these

two fields of study. An outline of the path this thesis will take to achieve this

integration is shown in figure 1.1.

Effective study of this system will require concepts from a diverse selection of

scientific fields. In this chapter then, I will review relevant concepts from three

fields: firstly, we will consider the evolutionary implications of motility in a broad

context. Secondly, we will focus on the specific biochemical, genetic and biophysical

properties of twitching motility. We will then end on the topic of active matter,

which will provide insights into the way the monolayer functions as a collective.
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Figure 1.1: Visual guide to this thesis.
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1.1. The evolutionary consequences of motility: Why move at all?

1.1 The evolutionary consequences of motility:
Why move at all?

Before we dive into the specifics of twitching motility, it is first worth questioning why

any bacteria move at all. Clearly, maintaining motility systems has its drawbacks.

Construction, maintenance and operation of the different machineries used for

motility is metabolically costly [10], proteins associated with motility are targeted

by the innate immune systems of multicelluar organisms [11] and movement increases

the risk of individuals straying into the territory of predators [12]. Nor is motility

necessary for microbial survival: around one third of sequenced bacterial species

are able to thrive without deploying any motility system [13]. Given its widespread

distribution, it can be assumed that motility has significant benefits. But when

will these benefits outweigh the costs of such complex systems?

1.1.1 Acquisition of new territory and resources

Intuitively, it might be thought that motility is important for improving a cell’s access

to new resources following local depletion through nutrient uptake. Analogously, a

cow will walk to a new region of a pasture once it has finished cropping the grass in its

standing range [14]. Somewhat surprisingly however, increasing the speed of bacterial

movement through a fluid does little to increase the flux of low molecular weight

nutrients to the cell, providing around a 1% increase in uptake rate for a swimming

speed of 10 µm s−1[14, 15]. This phenomenon (known as the Sherwood number

effect [16]) occurs because the increase in nutrient flux mediated by the movement

of the cell is tiny compared to the the pre-existing flux mediated by diffusion.

Although there is little advantage to be gained from moving in an unstructured

environment, in nature nutrient availability is rarely homogeneous. For example,

decaying particles of organic matter create local nutrient sources within the ocean

[17], and soils can possess nutrient gradients over a wide range of spatial scales [18].

On the one hand, this nutrient inhomogeneity can be exploited by cells through the

use of chemotaxis, which allows cells to migrate up the nutrient gradient towards the
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jackpot at its source [19, 20]. But environmental inhomogeneity can also promote

the employment of non-directed motility systems - by enhancing its directionality

of movement, a cell can improve its overall exploration of the global space and so

increase its chances of stumbling upon a nutrient patch [12, 21].

In cases where cells are able to grow to high densities, another effect comes

into play: a cell’s resources will be rapidly depleted by its neighbours. Growth of

these high-density communities is therefore strongly confined to their edge, where

access to open territory and resources is greatest [22–24]. Movement into this

open territory to utilise these resources can happen spontaneously through cell

growth, with compressive forces in the centre of the group pushing cells outwards

into new territory. Such movement is sometimes known as ‘sliding’ motility when

it occurs on surfaces, and is often facilitated by the secretion of surfactants [25,

26]. However, this simple mechanism can be greatly enhanced by generation of

active motility. For example, even without direction towards global structures

such as nutrient sources, ‘random’ swimming can greatly enhance the reproductive

capacity of motile populations of E. coli [13].

This type of population-level movement, in which populations gradually migrate

away from their ancestral source into new territory over many generations, is known

as range expansion and can have profound consequences for the composition

of communities. Because cell division occurs only in the outermost rim of the

community, the number of founder cells that will ultimately contribute to the

colonisation of the new territory is very low. These are perfect conditions for

strong genetic drift: because the number of dividing cells is so low, stochastic

fluctuations in the composition of the community edge can readily allow one

subpopulation to become locally dominant. This initial advantage will be further

amplified by the continuing expansion of the front, and can ultimately lead to the

segregation of different subpopulations into different regions of the new territory

[27, 28]. If a subpopulation is associated with a rare allele (e.g. it is a mutant

of the homogeneous foundational population), this process can allow it to reach
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very high frequencies and to spread over very wide areas [29]. Through this effect,

known as allele surfing, rare beneficial mutations can spread more rapidly than

in homogeneous systems. This increases the rate of adaptation of communities

undergoing range expansions [30].

1.1.2 Social interactions in motile systems

Discussion of these high-density microbial communities introduces another important

evolutionary aspect of motility: the influence of motility on social interactions. As an

illustrative example of an interaction, consider a cell A growing adjacent to another,

B. Because of its spatial apposition to B, A can influence the growth of its neighbour

in various ways. It might choose to cooperate with its neighbour by performing an

action that improves its neighbour’s reproductive success, for example by secreting

substances useful to its neighbour. Such an action might impose a cost on A, while

providing it with no additional advantage. Alternatively, it might choose to defect,

either by cheating - passively exploiting any cooperative actions taken by B - or,

more dramatically, by destroying B to acquire its resources. Which strategy should A

adopt to maximise its own evolutionary success? Initially it might seem that A should

always defect, as cooperation leaves it open to exploitation. Indeed, theoretical

approaches to this question suggest that mutual defection will be the stable state of

the system if there are no further mechanisms to stabilize cooperation [31]. However,

there is an additional factor: the ancestral relationship between A and B.

Because bacterial reproduction occurs through asexual binary fission, many

spatially proximal individuals (such as A and B) will also be (almost) genetically

identical. In general, genetic relatedness is thought to promote evolution of

cooperative behaviours even at the expense of the cooperating individual, as the

genetic content of the cooperator can still be passed to the next generation through

the improved reproduction of the highly-related associates that it assists [6, 31,

32]. This idea is neatly encapsulated in Hamilton‘s rule, which is a useful rule of

thumb for explaining the evolution of cooperative behaviours through this process
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of kin-selection1. A behaviour that induces a fitness cost of c in individual A

but simultaneously incurs a fitness benefit of b in a population of relatedness r

to A will be evolutionarily favoured if:

c < rb (1.1)

In the case that r ≈ 1 (as in our system of clonal bacteria), cooperative behaviours

can be favoured even if the behaviour causes a drastic fitness cost for the individual.

Individuals become essentially agnostic as to whether a potential reproductive

benefit is made available to themselves or a clonemate. It should not come

as a surprise therefore that cooperative behaviours are frequently observed in

bacterial populations [37–39].

How might motility affect these social interactions? Perhaps the most intuitive

change is that movement should destroy the spatial structure associated with clonal

growth by mixing together cells of differing genetic backgrounds. This might be

expected to discourage cooperative behaviours. Indeed, twitching motility has

previously been shown to have precisely this mixing effect, requiring the use of

mutants that are unable to perform twitching motility during the study of spatial

structure in P. aeruginosa communities [28].

Social interactions also intersect with the mechanisms of range expansion and

allele surfing described in the previous section. By purifying the cooperative

population, population bottlenecks can enable an expanding population of co-

operators to ‘outrun’ an invading population of defectors, even in the absence

of kin-selection [40]. Similar bottleneck dynamics can also lead to a breakdown

of mutually beneficial interactions between genetically distinct organisms [41].

Increased mixing of populations by motility at the community’s edge may therefore

improve the long-term viability of cross-strain cooperation.
1The usefulness of Hamilton’s rule as a predictor of evolutionary trends is currently a matter

of some debate. For relevant discussions, see [33–36] (among many others).
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1.1.3 Evolution of collective motility

Collective behaviours are a common feature of animals that live in high-density

groups. A number of studies have attempted to understand how evolution has

tailored the behaviour of individuals in groups to create collective behaviours that

increases their fitness, both individually and collectively. For example, virtual

schools of fish are rarely attacked by predators when the motions of the individual

‘prey’ are correlated [42]. This suggests that the collective behaviour of schooling is

adaptive, acting to discourage predation. Collective motion may also be exploited

by migrating animals. In models of migratory groups, it is assumed that leaders

possess sensory apparatus that allows them to detect the correct direction of

migration, but which is costly. It is further assumed that all members of the group

are gregarious, tending to follow one another. Evolutionary simulations of these

systems suggest that the optimised group structure consists of a small population

of leaders, and a much larger population of followers that avoids the fitness costs

associated with the sensory system [4, 43].

Although these are examples of cooperative collective motility, collective motility

can also arise through competitive interactions. The movement of groups of locusts

can become correlated once the density of group becomes high enough, resulting in

the emergence of ‘marching bands’ [2]. Initially, it was tempting to speculate that

these collective behaviours evolved to improve access to resources by the collectively

migrating group, but subsequent work has since suggested that they instead arise

from the tendency of locusts to cannibalise one another when at high densities.

Each locust attempts to flee the locusts behind itself, and pursues the locusts in

front of it. This tendency causes correlations in the movement of neighbours and

ultimately drives the generation of collective motions [5, 44].

Note that the majority of these previous studies have used animals as their

basis, rather than bacteria. This is an important distinction to make, as the ways

animals and bacteria can manipulate collective motility are likely to differ. Animal-

based collective motility tends to be mediated by social interactions, and as such is
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almost completely flexible. Flocks of birds, for example, do not create collective

motions because they are forced by the laws of physics to do so, but because

each bird follows behavioural rules. If the environment changes, the behavioural

rules (and the resulting collective behaviours) can be flexibly adjusted to adapt

to the change. In contrast, collective behaviours in biofilms are likely to be an

inevitable consequence of the high density of the system, resulting in correlation

of movement between neighbouring cells through physical alignment mechanisms.

In these systems, the emergence of collective movement may be a problem that

evolution must overcome, rather than an opportunity that evolution can exploit.

For example, the frequency of directional reversals of individual Myxococcus xanthus

cells appears to have been optimally tuned by evolution to prevent jamming in

migrating communities [45]. This jamming is a collective behaviour that would

otherwise slow down the speed of the microbial group.

In summary, motility can profoundly affect the dynamics of evolution through

multiple mechanisms. In this thesis, I will touch upon only a tiny selection of the

questions that might be addressed using the P. aeruginosa monolayer. However, the

future prospects of applying it to a wide variety of evolutionary questions seem bright.

1.2 Twitching motility: Crawling to new pastures

As we will see in subsequent chapters, the twitching motility apparatus will be

dissected in this thesis using a genetic approach: genes associated with the twitching

system will be deleted, and the changes of both individual and collective behaviours

in the resulting strains assayed. In this section, I will summarise the roles of the key

genes associated with twitching motility in P. aeruginosa, many of which will be

the target of subsequent experiments. I will also put twitching motility into a wider

context, showing that the results described later may have broader implications

for the physiology of prokaryotic organisms.
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1.2.1 Physical mechanism of twitching motility

Twitching motility is driven by the action of Type IV Pili (TFP), hair-like filaments

that extend from the cell surface, bind to solid materials in the nearby environment

and retract, pulling the cell forward in a similar fashion to the action of a grappling

hook [46–48]. Although this model is now widely accepted, its development was

gradual. P. aeruginosa was the source for the first evidence of pilus retraction,

when it was shown that phage particles adsorbed to the tips of TFP were actively

retracted towards the cell body [49]. The same species also provided the first direct

link between pili and twitching motility, when it was found that non-piliated and

non-retractile mutants both failed to migrate [50].

The role of TFP in twitching motility was later confirmed by more direct methods,

firstly by direct measurement of TFP-generated forces in Neisseria gonorrhoeae using

atomic force microscopy (AFM) [51], and then by direct imaging of pilus behaviour in

P. aeruginosa [52]. AFM revealed that the retraction forces generated by TFP exceed

100 pN, making them some of the strongest molecular motors known to date [53].

1.2.2 A note on TFP subclasses

In general, TFP can be split into two subclasses: TFa and TFb pili. P. aeruginosa

contains one TFa pilus type and either one or two TFb types depending on strain

background. Here, these two classes of TFb pili will be referred to as the Tad (Tight

adherence) and Con (conjugation) pili [47]. These pilus systems are largely separate,

each being associated with a separate set of assembly machinery and independent

regulatory systems. The Con subtype is associated with cell-cell conjugation and

DNA uptake from the environment. It is not present in PAO1, the strain used

throughout this thesis [54]. Tad pili contribute to cellular aggregation and the

formation of high stability biofilms in a number of species including P. aeruginosa

[55, 56]. Although both Tad and Con pili have recently been shown to be retractile

in some species [57, 58], in this literature review and the remainder of this thesis I
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will exclusively discuss the TFa subclass. This is the most well characterised and

widespread pilus type, and is the subclass responsible for twitching motility [47].

1.2.3 Taxonomic distribution of twitching and relationship
to other systems

One of the earliest surveys of the distribution of twitching motility was undertaken

by Henrichsen [59]. He decribed twitching in a number of species now classified

under the phylum Proteobacteria, generally in strictly aerobic species and purely in

Gram-negative species. As our understanding of the system has improved however,

so too has our appreciation for the near universal relevance of TFP and their related

structures. One recent search of genetic databases found TFP-related motifs in

1800 species, covering every phylum of bacteria and almost all phyla of archaea [60].

Partly, this change in our understanding of the distribution of TFP has come

about from the discovery of twitching motility in a wider variety of species. Surface-

associated twitching has been observed in several other bacterial phyla, including

Firmicutes [61] and Cyanobacteria [62]. Twitching can also be exploited for other

purposes than moving over surfaces. Bdellovibrio bacteriovorus is able to use

TFP to pull itself into the periplasmic space of prey bacteria during predation,

allowing consumption of host cell nutrients [63]. Retraction of TFP is also used

to assist in conjugation by bringing cells into close apposition. This is thought to

occur in some strains of P. aeruginosa [54] and even in the archaeum Sulfolobus

acidocaldarius following exposure to UV light [64]. More directly, TFP are able

to pull extracellular DNA into the periplasm of some species. For example, this

process forms an important component of the V. cholerae competency system [58].

More importantly, however, has been our appreciation for the homologies between

the TFP system and other aspects of bacterial physiology. The unifying element of

these systems is the pilin protein, which is assembled into several different structures.

Most closely related to the TFP is the Type II secretion system (T2SS), used by

bacteria to secrete proteins from the cytoplasm into the extracellular space [65]. A
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Type IV pilus-like pseudopilus is assembled and pushed into the extracellular space

with a cargo protein attached to its tip [66]. Pseudopili are made of pseudopilins,

proteins with extremely strong structural similarities to pilins. This similarity is so

great that minor pilins from E. coli can functionally restore pseudopilus assembly

in Klebsiella oxytoca cells lacking minor pseudopilins [67]. The structure of the

T2SS assembly complex is also homologous to that of the TFP assembly complex,

consisting of a secretin in the outer membrane, an inner membrane platform and a

hexameric ATPase responsible for pseudopilus assembly [60] (see section 1.2.4).

A more distantly related structure is the archaellum or archaeal flagellum.

This is an analogous helical structure to the bacterial flagellum that rotates and

permits ‘swimming’ through fluid [66]. However, its components and assembly

processes closely resemble those of TFP [68]. The process driving its rotation

also appears to more closely resemble the assembly of TFP than the rotation of

bacterial flagella, being dependent on the hydrolysis of ATP rather than dissipation

of the proton motive force [69].

It has recently been proposed that TFP, the T2SS and the archaellum be

classified as ‘Type IV Filaments’ (TFFs) to emphasize their common features [60].

Although these structures are widespread, their penetrance of the phylogenetic tree

is not complete. Many species (notably, members of the Alphaproteobacteria) lack

any TFFs. This has led to the suggestion that TFF systems may be a relatively

recent innovation, spread between phyla by horizontal gene transfer [70].

1.2.4 Structure and formation of the TFP complex

The Type IV pilus complex consists of two separate structures: the pilus filament

itself and the cell-membrane associated assembly complex responsible for its

construction. Most of the proteins associated with these were initially identified

on a functional basis in Pseudomonas using mutant screens [71], but more recent

approaches using X-ray crystallography [72, 73], single-particle averaging of TEM
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images [74, 75] and cryo-EM [76, 77] have allowed a 3D reconstruction of the TFP

system from the atomic to the whole-complex scale.

Most of the pilus filament is composed of the pilin PilA, a protein with a

globular head domain and an N-terminal α-helix that forms a flexible tail [72].

These are assembled into a 52 Å wide fibre containing four [77] to six [72] subunits

per turn. When placed under tension, PilA subunits of the TFP of N. gonorrhoeae

are capable of reorganizing into an extended helical conformation approximately

three times longer than the original pilus [78]. As well as PilA, several pilin-

like proteins classified as minor pilins (FimU, PilV, PilW, PilX and PilE) are

also incorporated in a mutually dependent fashion throughout the pilus fibre in

Pseudomonas [79, 80]. Correct expression of the minor pilins is necessary for

formation of TFP and expression of twitching behaviours [79]. The role of these

minor pilins remains unclear; it has been proposed that they may prime extension

of TFP prior to elongation [80], form an anchor or terminator of the pilus at its

base, or confer pilus binding specificity at the tip [46]. However, their presence

throughout the pilus fibre suggests they may also play a role stabilising or assisting

in the continuing assembly of the pilus.

The assembly complex is composed of three subcomplexes [47, 81]: an outer

membrane-associated secretion subcomplex (not present in Gram-positive bacteria),

the motor subcomplex at the inner membrane and an alignment subcomplex

spanning the periplasm (figure 1.2a).

The secretion subcomplex is responsible for allowing passage of the pilus

through the outer membrane, and mostly consists of a ring-shaped complex of PilQ

which forms a secretin pore through the outer membrane [74, 82]. The lumen of

this pore contains a gate-like structure, suggestive of a valve-like function for the

subcomplex [82]. In Pseudomonas, transport of PilQ through the inner membrane

and assembly in the outer membrane is assisted by the pilotin PilF, the second

component of the subcomplex [83].
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Probably associated with, but not influencing the assembly of, the PilQ secretin

is TsaP [75]. This binds the peptidoglycan of the periplasmic space, and improves

localization of the outer membrane complex to the rest of the TFP complex in

Neisseria and Myxococcus. Its deletion in these species correspondingly leads to

the formation of outer membrane protrusions containing multiple TFP, presumably

because of their inability to escape the periplasm through PilQ. In P. aeruginosa

however, its deletion appears to have little impact [82].

Acting as the engine of twitching motility is the inner membrane-associated

motor subcomplex. One component, the platform protein PilC, is permanently

associated with the complex and is essential for extrusion of pili [86]. The second

component is one of three hexameric ATPases, PilB, PilT or PilU. These act as

the motors of the system, harnessing the chemical energy from ATP to drive pilus

extension (PilB) or retraction (PilT or PilU). The state of activity of the pilus

machinery (extending or retracting) is determined by which of these three ATPases

is bound to the complex at a given moment [87]. PilU is structurally similar to

PilT and appears to play a more minor role in pilus retraction, as pilU mutants

are still able to retract their pili to a certain extent [88].

Spanning the periplasmic space between the secretion and motor subcomplexes

is the alignment subcomplex, with a number of proposed roles. Most obvious is

its physical linking between the motor subcomplex and the secretin pore, ensuring

efficient export of the TFP [81]. A more speculative role for the subcomplex has

emerged from the observation that it is able to interact with PilA monomers, the

primary component of the pilus fibre [89]. In this model, the alignment complex

acts to concentrate pilus subunits prior to assembly by the motor subcomplex and

so improves efficiency of pilus assembly. Finally, it has been proposed that the

subcomplex may mediate communication between different elements of the TFP

complex through conformational changes. For example, it may be responsible for

transducing open/close signals to the secretion subcomplex, or assembly/disassembly
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1.2. Twitching motility: Crawling to new pastures

signals to the motor complex [81]. There is currently little evidence to support

this function, however.

The alignment complex is composed of a series of stacked rings [76]. At the

cytoplasmic side, the actin-like protein PilM forms a ring closely associated with

the motor complex [76]. Bridging the inner membrane are PilN and PilO, which

form stable heterodimers [73] that presumably interact to form a complete ring.

Both proteins possess a single transmembrane helix, but the bulk of both resides

in the periplasm. The N-terminus of PilN interacts with PilM, providing a link

between the two rings [89, 90]. Next, the PilP lipoprotein associates with both the

inner membrane and the PilN/PilO dimer [91]. Finally, PilP interacts with the

PilQ secretion subcomplex [89], providing a structural link between the alignment

and secretion subcomplexes.

Construction of the Type IV pilus-associated machinery has been shown to

occur in an outside-in fashion in Myxococcus, with assembly progressing from the

initial PilQ secretin to PilC via the components of the alignment subcomplex

[92]. Given the homology of Type IV systems between species, it has previously

been suggested that an analogous assembly process may take place in other TFP

expressing bacteria [48]. However, the ability of PilQ-lacking Pseudomonas and

Neisseria strains to produce pili that remain trapped in the periplasm [93, 94]

suggests that this pathway of assembly is probably species specific. The assembly

process for the P. aeruginosa TFP complex remains unclear.

Assembly of the complex occurs at the cell poles in the rod-shaped P. aeruginosa.

It has been speculated that this may be driven by association of PilM with the Z-ring

during cell division [95]; presumably this localisation would then become ‘frozen in’

following maturation of the septal region. A suite of other proteins, including MreB

[96], PocA, PocB and TonB [97] have also been implicated in polar localisation of

the TFP assembly complex, although their respective roles are currently unclear.
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1.2.5 Mechanisms of TFP assembly and disassembly

Despite extensive efforts to determine the structure of the Type IV pilus and the

machinery responsible for its assembly, knowledge of the mechanisms by which the

TFP complex assembles and disassembles the pilus fibre remains patchy at best.

These questions have been addressed with genetic and, more recently, structural

methods, but crucially these methods are only able to provide a static image of

the TFP complex. As assembly and disassembly processes are inherently dynamic,

our ability to distinguish different mechanistic models remains limited.

At the beginning of the process is the cytoplasmic production of PilA as a

prepilin. To incorporate PilA into the pilus, it must first be transferred from the

cytoplasm to the inner membrane. The initial phase of this process is mediated by

PilD, an enzyme responsible for first removing a short, positively charged leader

peptide at the N-terminus [98] and then methylating the new N-terminal amino

acid residue [99]. Processing of the prepilin in this way appears to be necessary for

appropriate insertion of the N-terminal domain into the inner membrane.

The next stage in the process is transfer of processed PilA from the cytoplasmic

side of the inner membrane to the periplasmic side. Prepilins of the Type-II secretion

system of Pseudomonas are moved across the membrane by the Sec translocon,

targeted co-translationally by the Signal Recognition Protein (SRP) [100]. The

SRP is able to recognize prepilins through a conserved N-terminal sequence of

around 20 hydrophobic amino acids [100, 101]. Exchange of the N-terminal tails

of Type-II secretion and TFP prepilins does not affect function of either [100],

implying that both use the same targeting and export system. The exact interaction

between PilD-based pre-processing and SRP/translocon-based insertion into the

inner membrane is unclear, although as processing by PilD takes place in the

cytoplasm it presumably occurs prior to translocation [100].

Once in the inner membrane, the mature PilA protein becomes available for

use by the TFP complex. It is known that assembly and disassembly of the pilus

is ATP dependent [53], but exactly how this chemical energy is converted into a
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mechanical pushing or pulling force by the TFP complex is disputed [48]. However,

given the high degree of sequence and structural similarity between the PilB and

PilT extension and retraction motors [84, 102, 103], extension and retraction are

probably mediated by similar mechanisms.

Recently, a crystal structure of the PilB hexamer bound to ATP was solved [84].

At any given moment, the hexameric ring forms an elliptical toroid, with opposing

pairs of monomers adopting identical conformations (figure 1.2b). Each monomer

is composed of two globular domains connected by a flexible hinge. Four of the

monomers, those at the highest curvature regions of the ellipse, are in an ‘open’

conformation with the hinge open at a wide angle. The remaining two subunits,

those forming the flatter edges of the ellipse, are in a ‘closed’ conformation. These

differ from the open form by a 55° flex in the hinge region. Hydrolysis of ATP is

only possible for subunits in the closed conformation, and is thought to drive the

subunit back into an open conformation. This ‘post-hydrolysis’ subunit is then

thought to relax into a third ‘wide-open’ conformation, capable of exchanging the

spent ADP for ATP and returning to the closed conformation. By synchronizing

the conformational changes of all six subunits, the PilB complex is thought to

undergo a concerted global conformational change combining an upward scooping

motion through the central pore with a rotational squeezing action of the pore’s

lumen. Similar rotational systems have been observed in related ring-translocases,

classified under the symmetric sequential rotary mechanism [104].

As the scooping motion occurs orthogonal to the plane of the complex, it has

been proposed that this may generate the pushing force necessary for extension,

presumably via mechanical coupling to the PilC/M/N/O/P complex [84]. An

alternative model proposes that PilC forms a dimer that inserts into the lumen of

the PilB/PilT hexamer. Rotational squeezing of the lumen then drives a stepped

rotation of the PilC dimer, causing it to spool PilA monomers into or out of the

base of the pilus one at a time [76, 85] (figure 1.2c). Supporting this model, the

cytoplasmic N-terminal domain of PilC interacts directly with the lumen of PilB
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[86], and the structure of the PilT hexamer is suggestive of a counter-rotational

squeezing of the pore compared to PilB [85]. This would potentially allow the

PilT hexamer to retract the pilus through a mechanism that is simply the reverse

of the mechanism of extension, unspooling the pilus and reinserting the pilins

into the inner membrane for reuse.

1.2.6 Regulation of twitching activity in Pseudomonas

Regulation of twitching motility appears to be split into two separate systems. The

first permits regulation of the quantities of proteins involved in the biogenesis of

pili, in particular the major pilin PilA [105, 106]. Because this system involves

transcriptional control it is inherently global, driving cell-wide changes in protein

levels. At a more local level, there appears to be a separate regulatory system that

controls the relative binding states of the extension and retraction motors PilB and

PilT/U, thereby setting the extensile or contractile state of each pilus [107, 108].

This system appears to mediate changes in motor binding through protein-protein

interactions and post-translational modifications rather than through changes in

protein levels, and therefore represents a portion of the regulatory circuit that is

more spatially targeted. Both systems are important for understanding control

of twitching motility in P. aeruginosa.

1.2.6.1 Regulation of pilus components

A core element of the pilin quantity control system in P. aeruginosa is mediated

by the Pil-Chp cluster, a homologous set of proteins to those of the chemotactic

Che system of E. coli [109]. Much of our understanding of this system is based

directly on this homology; unfortunately, most of the inferred interactions between

the components of this system have not yet been explicitly demonstrated in P.

aeruginosa. Nevertheless, a general consensus on the main aspects of the pathway

has been reached [47, 81, 110] (figure 1.3a): at the head of the cascade is the Methyl-

accepting Chemotaxis Protein (MCP) homologue PilJ, a protein that localises to
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Figure 1.3: Simplified view of regulation of pilus biogenesis.(a) and localisation of pilus
activity (b) in P. aeruginosa. See text for more details of interactions. IM = Inner
membrane. Question marks indicate pathways that have been inferred and/or not directly
shown to exist in P. aeruginosa.
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both poles of the cell and which is essential for twitching [108, 109, 111]. As an MCP

homologue, PilJ is thought to respond to some signal in the periplasm and transmit

it across the inner membrane. It is thought to be associated with two proteins,

PilK and ChpB, that are homologous respectively to the CheR and CheB proteins

of the E. coli chemotaxis system. By this homology, it is predicted that PilK

will methylate PilJ while ChpB will demethylate it, providing a means of sensory

adaptation [112, 113]. This has not yet been directly demonstrated, but elimination

of ChpB results in hyperpiliation, suggesting some role in defining PilA levels [114].

The signal detected by PilJ is transmitted to the histidine kinase ChpA via an

adaptor, most likely PilI [113, 114]. ChpA contains several sites of phosphorylation,

most of which are necessary for normal twitching motility [113, 115]. Upon signal-

triggered phosphorylation, these domains interact with other proteins. These appear

to include the response regulators PilH and PilG, structurally related proteins with

strong homology to the CheY protein in the E. coli chemotaxis pathway [108].

By this homology, these are thought to be phosphorylated in response to the

ChpA-mediated signal [109, 116]. It has also been suggested that PilH may act

as a phosphate sink for PilG, ‘soaking up’ the activating phosphate group and

attenuating the signal from ChpA [114]. Their role remains unclear2.

Beyond this point, the cascade converges on a fairly generic virulence-associated

pathway that controls a range of different phenotypes, including Type-III secre-

tion and twitching motility. Activation of the adenylate cyclase CyaB by some

combination of ChpA and PilG/H leads to the production of cAMP, which in

turn binds to the protein Vfr and activates the transcription of a raft of different

virulence-associated genes. These include pilA and those encoding the structural

components of the TFP assembly complex [114, 117, 118]. Other regulatory

systems converge at this point, with activation of CyaB by proteins including

FimL [114, 119] and FimV [114]. FimL may also have a role in activating the
2We will see in chapters 5 and 6 that one of the key pieces of evidence currently used to

infer the function of PilH and PilG (that mutants lacking either form smaller colonies than the
wild-type in certain environments) has previously been misinterpreted. I will therefore remain
particularly agnostic as to their function here.
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transcription of vfr [120], suggesting multiple regulatory roles. The signals driving

these other inputs are currently poorly understood. cAMP production is balanced

by its degradation by the phosphodiesterase CpdA [119]. It is unknown if this

degradative process is itself regulated.

Given its homology to the chemotaxis system of E. coli, it has been tempting to

explain the chemotactic properties of P. aeruginosa twitching motility [121, 122]

using the Pil-Chp system [110]. Generally, chemotaxis towards different compounds

is mediated by ligand-specific MCPs that ‘plug into’ the head of the chemotaxis

signalling cascade [123]3. However, PilJ is the sole MCP associated with the Pil-Chp

system [124], suggesting a more specific role for the Pil-Chp control axis. Recently,

it has been shown that activation of the Chp-Vfr axis occurs upon mechanical

stimulation of pili in a PilJ-dependent fashion, suggesting that its primary role

in P. aeruginosa is mechanotransduction [106, 112]. Consistent with this view,

chemotaxis towards dioleoyl phosphatidylethanolamine (PE) is retained within

mutants of pilJ, provided its reduced cytosolic cAMP levels are compensated for

[125]. The mechanism mediating chemotaxis in P. aeruginosa (discussed in the next

section) remains elusive, although three other candidate systems with homology

to the E. coli Che system exist in the P. aeruginosa genome. One of these, the

chemotactic pathway for P. aeruginosa flagellar motility, is associated with a diverse

set of MCPs [124], and may plausibly also have an input into twitching chemotaxis.

Levels of PilA prepilin are maintained at an approximately constant level by a

negative feedback loop involving the PilS-PilR two-component system [105, 126, 127].

Two-component systems generally perform regulatory functions via phosphorylation

of a response regulator by a histidine kinase in response to some extracellular signal;

in this case, endogenously produced PilA appears to have subverted the role of the

extracellular input, interacting with PilS in the inner membrane and preventing

phosphorylation of PilR. If PilA levels are low, PilR is phosphorylated by the now

unbound PilS and up-regulates pilA transcription, restoring PilA levels to normal
3Note this ligand specificity is not complete. Some MCPs can bind to two ligands, one directly

and a second in conjunction with a supplementary periplasmic binding protein [123].
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[105]. Deletion of either component of this system results in near complete loss of

pilA transcription and consequently the elimination of twitching [127].

Together, these pathways determine the quantity of PilA pilins and pilus assembly

complexes associated with the inner membrane. However, assembly of PilA into

functional pili is dependent upon the assembly and disassembly motors, PilB

and PilT/U. Control of these appears to represent the second axis of twitching

control in P. aeruginosa.

1.2.6.2 Regulation of pilus extension/retraction

The existence of a second twitching control axis is strongly implied by experiments

showing that the number of pili in a ∆pilG mutant was restored upon application

of exogenous cAMP, but twitching motility was not [114]. This result has since

been replicated and extended to FimV, which also has cAMP dependent and

independent roles [128]. These cAMP-independent regulatory systems are even less

well understood than the mechanisms controlling PilA levels. One comparatively

early study suggested that following phosphorylation by ChpA, PilG and PilH

interacted directly with PilB and PilT/U, promoting pilus extension and retraction,

respectively [108]. No direct evidence was provided for this interaction however, and

in general observations of direct protein-protein interactions between elements

of this system are lacking.

It does, however, seem likely that regulation of PilB and PilT/U binding to the

TFP complex is important for controlling pilus activity locally. In particular, the

relative binding state of these proteins appears to be important for determining

the direction of movement of cells. In Myxococcus for example, the TFP assem-

bly complexes remain stably localised at both poles, while PilB is localised to

the leading pole and PilT to the lagging pole. Asymmetric localisation of the

assembly/disassembly motors ensures that pili are extended from the front and

suppressed at the rear, permitting directional movement. Periodic switching of PilT

and PilB to the opposite poles then permits directional reversals, under the control
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of the Frz cellular ‘clock’ [129]. Similarly, relocalisation of PilB is at least partially

responsible for mediating phototaxis in Synechocystis, demonstrating that motor

complex localisation can mediate directed cellular movement [130].

In P. aeruginosa, directional reversals permit chemotaxis by biasing movement

towards chemoattractants [20]. How is this achieved? Dynamic localisation of

motor complexes has previously been noted in this species, presumably playing a

similar role as in Myxococcus and Synechocystis [96, 131] (figure 1.3b). In addition,

other proteins with a putative sensory role show unipolar localisation, including

the cyclic-di-GMP binding protein FimX which localises to the leading pole with

PilB [132, 133]. Interestingly, some of these spatially dynamic proteins appear to

be mutually dependent upon each other for appropriate localisation and activity.

For example, loss of either PilB or FimX results in diffuse cytoplasmic localisation

of the other, while loss of PilC or PilQ results in diffusive localisation of FimX

[133]. FimX may also be involved in the placement of TFP assembly complexes,

as fimX mutants produce ectopic, non-polar pili [134].

As indicated by the inset of figure 1.3b, our understanding of the biochemical

processes that drive the dynamic relocalisation of these different components is still

in its infancy. Polar localisation of PilT and polar expression of pili is increased in

cells grown in mechanically stiff environments [96], suggesting a link to the PilJ-

PilG mechanosensory axis. An as-yet unknown chemosensory input presumably

also modulates this localization pattern, permitting bias of reversals towards a

chemoattractive source. Finally, structural proteins such as MreB may also play a

role, providing a scaffold for redistribution. Ultimately though, much more remains

to be discovered about how this remarkable system functions.

1.2.7 Single-cell twitching motility patterns

Understanding the biochemical and genetic regulation of twitching motility cannot

tell us by itself how different types of movement can be generated by the twitching

motility system. This is a non-trivial question, as the numerous forces acting on
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the cell body through multiple pili can interact in complex ways to generate the

final motion of the cell. In this section, different pili-mediated motility patterns

and our current understanding of the physical mechanisms by which they are

generated will be reviewed.

1.2.7.1 Statistical properties of organismal movement

Before we dive into the specific motility patterns of twitching organisms, let us

first consider the more general characteristics of motility. How does the choice of

movement pattern affect the fitness of an organism? At the most coarse-grained

level, it is useful to distinguish movements in a coherent, linear direction (‘ballistic’)

from movements that are uncorrelated over time (‘diffusive’). This distinction

is of major biological importance, as ballistic motion permits improved sampling

of the environment compared to diffusive movement. Improved sampling can be

helpful, allowing organisms to more effectively encounter food or mates, but can

also be harmful, increasing the danger of encountering a predator or enemy [12].

Evolutionary forces can therefore shape the statistical properties of movement in

organisms, improving their adaptation to their niche.

The apparent form of motility employed by an organism can differ at different

timescales. For example, E. coli swims in an approximately straight line under

the power of its flagella. Periodically however, one flagellum will change rotation

direction, causing the cell to tumble and randomly select a new direction of motion,

resulting in overall diffusive motion at long timescales (assuming the absence of

chemotactic gradients in the environment). We can express this combination of

short-term linear motion and long-term diffusive motion by saying that E. coli cells

undergo a ballistic to diffusive transition between short and long timescales [135].

Similar transitions can be observed in other planktonic organisms, mediated by

different mechanisms [12]. In general, for organisms moving at equal speed, the

longer the persistence length (informally, the distance over which an organism
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moves without substantially changing movement direction), the longer the timescale

at which this transition occurs.

These transitions between movement types can be captured by calculating the

root mean squared displacement (RMSD)
√
M at each timescale τ :

√
M(τ) =

√
〈(x(t0 + τ)− x(t0))2 + (y(t0 + τ)− y(t0))2〉, (1.2)

where 〈〉 indicates the ensemble mean of the contents of the brackets over all

individuals and all values of t0, (x(t), y(t)) indicates the instantaneous position of

one individual at time t, and t0 is the reference time.

Diffusive motion is characterised by a scaling between
√
M and τ of

√
M ∼

√
τ .

For ballistic motion,
√
M ∼ τ . Because of this, these two forms of movement can

be distinguished in plots of
√
M against τ on log-log axes. The gradient of the

resulting plot for diffusive movement is 0.5, while ballistic motion corresponds to

a gradient of 1.0. Scalings between these two values are termed superdiffusive,

while scalings shallower than 0.5 are termed subdiffusive.

In many studies of single-cell twitching motility [20, 136, 137], it has proved

useful to use RMSD measurements to differentiate different types of movement. It

will also prove useful to refer to equation 1.2 at several points in later chapters.

1.2.7.2 Neisseria

Now that we know how to quantify different patterns of twitching motility, can

we understand how these patterns are generated? To answer this question at the

mechanistic level, it would be easiest to directly image the dynamics of pili and relate

them to the movement of cells. Unfortunately, direct imaging of pili has proven

technically challenging. At 52 Å, pili are too thin to be imaged using traditional

light microscopy, and fluorescence-based approaches (which would enable imaging

of structures below the diffraction limit) have also proven difficult to apply. Fusion

of PilA with fluorescent proteins eliminates pilus production, and protein-binding

fluorescent dyes are unable to easily distinguish pili from the cell body. The vast
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majority of studies to date have therefore focussed instead upon movements of

the cell body, and have then attempted to reason backwards to infer the pilus

dynamics needed to generate these movements.

Studies of single-cell twitching motility patterns to date have focused on the

behaviours of isolated cells. Generally these behaviours have been studied at the

interface between a solid surface (e.g. a glass coverslip) and a liquid. In the

simplest cases, usually involving Neisseria, cells can simply be imaged at the base

of fluid-filled vessels (e.g. [137, 138]). Pili in Neisseria are distributed peritrichously

(i.e. all over the cell body), and cells are of approximately spherical shape, forming

somewhat elongated diplococci during cell division. These two features make

Neisseria attractive from a theoretical as well as a technical standpoint, as they allow

the simplifying assumption of spherical symmetry to be made [139]. In general, the

movement of these cells is well approximated by a random walk [137, 139]. However,

the characteristics of this random walk can be profoundly affected by other factors.

The dominant theory of single-cell twitching motility in Neisseria is the tug-

of-war model, so called because the position and movement of the cell body is

determined by the balance of tensile forces acting on multiple pili attached to both

the cell body and the surrounding solid substrate [48, 139]. An important aspect of

the tug-of-war model is that it permits mechanical coordination of motility without

external coordination factors: small initial asymmetries in force generation are

amplified by preferential detachment of those pili under the highest tension [139,

140]. As a result of this coordination, cells can increase the persistence length of

their movements above the length of a single pilus.

Also important for generating directional persistence are memory effects, which

cause pili to be repeatedly extended and retracted from the same assembly complex.

Co-localisation of many pili and assembly complexes to a single site on the cell

exterior is also likely to be an important contributor to persistence [139]. Persistence

length also increases with the total number of expressed pili [137], probably because

the stochastic noise associated with the discrete number of pili is reduced.
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1.2.7.3 Pseudomonas

Experimental investigation of single-cell twitching motility has also been performed

in Pseudomonas species, typically using microfluidic flow chambers for growth and

imaging of the cells (e.g. [20, 136, 141]). These more complex microfluidic protocols

are necessary for P. aeruginosa because of its relatively slow single-cell motility

(0.04 µm/s−1 [136] vs. 1.6 µm/s−1 for Neisseria [137]). Replenishment of local

resources by microfluidic flows allows cells to be imaged over much longer timescales

than those permitted in static experimental systems.

Three major factors drive the differences in single-cell behaviours in Pseudomonas

species compared to Neisseria. Firstly, cells are shaped as elongated rods. Secondly,

pili are mostly localised at the cell poles. Thirdly, most strains also express flagella

which are able to act both independently and in conjunction with TFP to determine

surface behaviours. These factors lead to a much greater diversity of single-cell

behaviours than in Neisseria.

The most stable form of motility in Pseudomonas is crawling, in which cells

lying flat on a 2D surface slowly but persistently move in the direction of one of

their poles. Preferential directional motion appears to be mediated by extension

and retraction of pili at a single pole, as suggested by the preferential localisation

patterns of PilB, PilT, PilU and FimX [96, 131–133] and by electron microscopy

of fixed cells [97]. As previously mentioned, crawling cells can perform biased

directional reversals to mediate chemotaxis [20]. The lagging pole of crawling cells

can also perform rapid but transient reorientations known as ‘slingshots’ [142];

these appear to be associated with the detachment of individual pili and the rapid

rebalancing of pili-generated forces acting on the cell body [142, 143]. When exposed

to an external flow, a subpopulation of cells can also exploit crawling to migrate

upstream against the current [144]. This may assist in colonisation of otherwise

unreachable locations in the vascular systems of plants and animals.

More similar to the motility patterns seen in Neisseria is walking, in which

horizontal cells pull themselves into a vertical orientation using their pili and move
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about the 2D plane in a pattern well approximated by a random walk [136, 145].

Walking appears to be an intermediate stage between surface-based crawling and

planktonic swimming, as walking cells are much more prone to surface detachment

than crawling cells. Although walking is substantially faster than crawling (0.07

µm s−1 compared to 0.04 µm s−1) [145], it also displays greatly reduced directional

persistence. These features of walking and crawling have led to the suggestion that

crawling may be specialised for the rapid coverage of large distances, while walking

is used for greater efficiency when searching the local area [145].

An interesting third form of motility is cartwheeling, in which cells alternate

repeatedly between the crawling and walking modes. This is a relatively minor

form of motility, being displayed by <1% of surface-associated cells [136].

Other forms of surface-based motility in Pseudomonas incorporate the flagellum.

The presence of a flagellum is particularly important during the transition from the

planktonic to the surface-based lifestyle, as it facilitates initial surface attachment.

Cells attached to the surface by the flagellum are rapidly spun in place by the

flagellar motor [136]. Cells can also swim close to the surface. Swimming cells

can be distinguished from crawling cells by their rapidity of movement and gently

curving trajectories, similar to those observed in other flagellated species [136, 146].

Twitching drives different motility patterns in other species. Particularly well

studied is the S-form of motility in M. xanthus [48]. However, due to its complex

interactions with the gliding motility system, the peculiarities of its regulation and

its lack of immediate relevance to my work in P. aeruginosa, discussion of this

particular species’ forms of twitching motility will be omitted here.

1.3 Active matter: The physics of moving crowds

What material is a flock of starlings? In some senses the question is nonsensical.

Clearly it is composed of many materials: the solid beaks, bones and feathers of

the birds, their liquid blood and lymph, the gaseous air in which the flock flies.

And yet, at a coarser scale, the flock appears to have uniform properties. Not
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only is the collective able to cohesively migrate in a specific direction, it can also

billow, bend and break in response to assault from a hawk as though it were a

contiguous structure [3]. In some respects it behaves more like a uniform piece

of matter than a disjointed collection of birds.

To understand the behaviours of systems such as this starling flock, the field

of active matter has been developed. Two unifying properties define all active

matter systems: firstly, that the system should be composed of individual elements,

and secondly, that these elements should be able to inject energy into the system

at the individual level [147]. Because of this definition, active matter is first and

foremost a biological field of physics. It is applicable not only to understanding the

collective behaviours of groups of organisms [148–152], but also to understanding

the movements of their cells [153–155] and even the movements of sub-cellular

systems [156, 157].

We will see later that understanding movement in Pseudomonas is not simply

a matter of understanding how TFP work, or even how they interact to generate

single-cell movements. In the experimental systems used throughout this thesis,

twitching cells are packed together so tightly that they directly interact with each

other, generating complex large-scale behaviours similar to those observed in the

starling flock. In this section I will summarise some of the most important theoretical

concepts from the field of active matter with the aim of better understanding the

origins of these emergent behaviours.

1.3.1 General characteristics of active matter

The injection of energy into active systems at the scale of the individual agents

drives a number of non-equilibrium phenomena not seen in classical thermodynamic

systems. These generally arise from types of interaction between agents that are not

seen in systems at equilibrium, leading to propagation of information throughout

the system and the formation of long-range correlations between agents [1, 147].

Models of active systems typically contain control parameters that set the type of
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qualitative behaviour observed in the system. Usually, some (such as agent packing

density) control the strength or rate of the correlating interactions, some (such as

agent diffusivity) control the strength or rate of decorrelating processes and some

control a combination of both types of process through separate mechanisms. A

good example of this latter class of control parameter is the force generated by

agents, which can allow agents to move at higher speeds and so carry information

more quickly throughout the system, but which can also promote decorrelating

local feedback loops. Interesting behaviours typically emerge when correlating

and decorrelating processes are in a degree of balance, with the resulting system

displaying neither fully correlated behaviour (with all agents behaving identically)

nor fully decorrelated behaviour (all agents displaying independent behaviours).

A simple but elegant example of this tension between correlating and decorre-

lating processes comes from one of the foundational theoretical studies of active

systems. In the Vicsek model of flocking [158], an agent i is modelled as moving

at a constant speed v in a direction θi in a continuous 2D space with periodic

boundary conditions. During each timestep, θi is updated to take the average

value of i’s neighbours (defined as being within some set distance of i) plus some

noise, η. This sharing of orientational information tends to drive correlation of

θi between neighbouring agents, while the noise η tends to drive decorrelation.

The density ρ of the agents and their speed v influence the correlation rate, as

they control the average amount of time between agent interactions and so the

amount of decorrelating noise that can accumulate between correlating events. As

the control parameters are varied from a noise-dominated set (high η, low v, ρ)

to a correlation-dominated set (low η, high v, ρ), the behaviour of the system

transitions from random movements of the agents, to the formation of small flocks

with correlated motion, to a system-wide flock with all agents moving in the

same direction. The choice of a specific, single direction of motion by the entire

system in this correlation dominated regime represents a symmetry-breaking process

impossible for equilibrium systems, and is characteristic of active matter [159].
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1.3. Active matter: The physics of moving crowds

Another non-equilibrium characteristic of active matter systems are giant

number fluctuations [160]. These arise from the tendency of the correlating

processes to create high density ‘packs’ of agents with similar behaviours that

migrate together, accumulating further agents as they travel. For equilibrium

systems and other systems where number fluctuations obey the central limit theorem,

the standard deviation of the number of agents in a small region of the entire field

σ(N) scales as the square root of the average number of agents in the window

〈N〉, i.e. σ(N)√
〈N〉

is invariant as the size of the window changes. In active systems

however, these fluctuations grow more quickly as the number of agents increases.

For some ideal systems, σ(N) can scale as fast as 〈N〉 [160], although most realistic

systems adopt a scaling law somewhere between these two extremes. Giant number

fluctuations have been observed in both living [161] and abiotic [162] active systems.

The final characteristic behaviour of active matter that I will discuss here is

active turbulence. Much like its counterpart in classical fluid dynamics, active

turbulence is associated with the formation of large numbers of vortices. These

vortices form a loose network, with neighbouring vortices flowing in opposite

directions [163, 164]. Active turbulence is a fairly generic feature of active systems,

being observed in high-density systems of swimming bacteria [163] and sperm

[165], epithelial sheets [164, 166], microtubules [167] and even humans [168].

Whether these phenomenologically similar collective behaviours are driven by a

single physical process remains unknown, but for certain types of system known

as active nematics, the origins of the turbulent vortex networks seem at least

partially understood [169]. In the next section, I will discuss some of the properties

of active nematics and how they ultimately generate turbulent behaviours.

1.3.2 Active nematics

A liquid crystal is a type of matter composed of many individual elements that

tend to align with each other as in a crystal, but which are also capable of flowing

in a liquid-like fashion. A further specification may be made that the centres of
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mass of the elements show no long-range correlation with each other, in which

case the liquid crystal is referred to as a nematic [170].

Classical liquid crystal and nematic theories were developed as continuum

approximations to explain the behaviours of molecular liquid crystals such as

cholesterol [171]. However, with some additional modifications (typically the

addition of activity terms to the hydrodynamical equations of motion), such

mathematical models are also applicable to types of active matter composed of

elements that align with each other [147]. With this extension, the theory of

nematics becomes applicable to closely-packed anisotropic cellular systems, of which

bacterial and eukaryotic monolayers are some of the best studied examples [153,

154, 166, 172, 173]. These are known as active nematic systems. Active nematics

can be further categorized as extensile or contractile, based on the active stresses

imposed on the surrounding media by each of the coarse-grained active volume

elements composing the system. Volume elements in extensile systems (such as

microtubule networks [156]) tend to expel media from their poles and draw it in

from their equators, while those in contractile systems (such as actin networks

[174]) do the opposite, pulling in media from their poles and expelling it at their

equators [175]. In theoretical approaches, this continuum of behaviour is usually

expressed using the activity parameter α, with α > 0 for contractile systems, α < 0

for extensile systems and α = 0 for passive (non-active) systems.

It is important to note at this point that the notion of an active nematic is an

inherently coarse-grained, mesoscale concept, and does not necessarily map directly

onto the microscopic properties of the composing agents [147]. It is certainly possible

for the correspondence to be quite direct: for example, growing E. coli cells expand

from both poles simultaneously and also form an extensile active nematic [166, 176]

(figure 1.4a). However, it is also possible for the properties of the underlying agents

to be quite distinct from those of the corresponding coarse-grained volume elements.

Polar agents possess head-tail asymmetry, for example by actively moving along

their long axis towards one of their poles. The class of system formed by polar
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1.3. Active matter: The physics of moving crowds

Figure 1.4: Illustration of coarse-graining for different classes of active matter. In each
panel, the left-hand image indicates the agents within a small patch of an active system
and the right-hand image represents the corresponding continuum approximation. a)
System with symmetrically active agents and nematic symmetry (e.g. growing bacteria
[166]). b) System with asymmetrically active agents and polar symmetry (e.g. actin
networks [157]). c) System with asymmetrically active agents and nematic symmetry (e.g.
microtubule networks [156]).

agents depends upon their local ordering. If each of the polar agents within

some local neighbourhood is pointing in a single direction, the system is said to

possess polar symmetry (figure 1.4b). An example of such a system is the Vicsek

model discussed above. However, if the set of agents within the neighbourhood are

not biased towards a single direction, the system is again said to possess nematic

symmetry (figure 1.4c). Microtubule networks form an example of such a system.

Each individual microtubule is polar, with distinct + and - ends, but the overall

system possesses nematic symmetry [156].

Nematic theory is applicable to both two- and three-dimensional systems,

and much of the earliest work on molecular liquid crystals was necessarily three-

dimensional as the scale of the composing molecular elements is smaller than that

of any possible 2D confinement. In biological systems however, cells can often

be confined to a 2D monolayer or actively self-organise into a monolayer. As

this is an accurate description of the P. aeruginosa monolayer, I will consider

here only the (simpler) 2D theory.
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1.3.2.1 Topological defects

Key to the organisation of nematic systems are topological defects, points in

the nematic where the local orientation of the nematic changes instantaneously.

Defects can be analysed by finding the director field θ of the system, the direction

in which the nematic elements are preferentially aligned at each spatial position.

Under the assumption that the nematic elements lack head-tail asymmetry, θ

is defined over the range −π
2 < θ ≤ π

2 . We can now classify defects by their

winding number (also known as charge or strength), k. This is the value of the

path integral over θ taken over a closed path Γ winding around the defect core

in an anti-clockwise direction (figure 1.5a):

k = 1
2π

∮
Γ(s)

dθ

ds
· ds, (1.3)

where s parametrises the path Γ. k uniquely distinguishes each defect class, each

value of k defining a set of homotopically equivalent director field structures over

the path Γ (figure 1.5b) [177, 178]. It is this property of homotopy (the ability

to smoothly deform θ around a defect without changing the value of k) that

provides the connection between defects and topology; just as it is impossible

to deform a sphere into a torus without tearing a hole in it, so it is impossible

to alter a defect’s value of k without discontinuously changing the values of θ

encountered while travelling around Γ.

It can readily be seen from this definition that defects are capable of movement,

even in the absence of translational movement in the underlying nematic - defect

motion can instead be mediated by the appropriate reorientation of the (static)

nematic, similar to how a field of compass needles will dynamically reorient towards

a moving magnet without changing the positions of their centres of mass. However,

as we will see, nematic flows can also be important for determining the precise

dynamics of defect motion.

Conveniently, it can be shown that by considering the set of 2D topological

defects as a group (under the combining operation of merging of the paths of
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1.3. Active matter: The physics of moving crowds

Figure 1.5: Definition and classification of two-dimensional topological defects. In each
image, the background colour and the black lines indicate the local value of the director
field θ. a) Topological defects are classified according to the value of the path integral
over the director field around the defect core. This value is then divided by 2π to give
the final defect classification k. In the case of the black path, k = +1⁄2, while for the
white path k = 0 as no defect core is present. b) The menagerie 2D of topological defects.
Although only those defects with charge |k| < 2 are shown here, defects with arbitrarily
large values of k can be defined. For +1⁄2 (comet) and -1⁄2 (trefoil) defects, corresponding
symbols used later in this thesis are overlayed on top of defect cores. In the case of comet
defects, the orange arrow points towards the defect ‘head’ (the direction in which the
director field is tangental to a circle drawn around the defect core) and away from the
defect ‘tail’ (the direction in which the director field is perpendicular to a circle drawn
around the core).

their line integrals), their charges k are isomorphic to the integers Z [177]. This

means that when two defects come sufficiently close to one another, we can regard

them as having merged, forming a new defect with a charge equal to the sum of

the charges of the two merged defects. Conversely, a defect can spontaneously

decompose into two separate defects with a sum of charges equal to that of the

original defect. Whether or not these processes actually occur depends on whether

the transition is energetically favoured.
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1.3.2.2 Dynamics of topological defects in active nematics

To understand how defects will move within the nematic, we first need to understand

the processes that drive their movement. There are two primary contributors to

the energetics of active nematic systems. The first is the distortion free energy,

the elastic energy stored by the nematic when the director field is not in perfect

global alignment. Under the simplifying assumption that the nematic order is the

same strength everywhere, we can represent the director field θ as the unit vector

field n̂. The free energy contribution from the elastic distortion of the 2D nematic

is then given by the Oseen-Frank energy [171]:

Fd = K1

2 (∇ · n̂)2 + K3

2 (n̂× (∇× n̂))2. (1.4)

The first term of this equation corresponds to splay and is high for regions

where the director diverges (similar to the vanes of a fan), while the second term

corresponds to bend, high for regions where the director changes direction in

a coordinated fashion (similar to a bend in a river). K1 and K3 are known as

the Frank constants, and set the relative contributions to the total free energy

from these two forms of distortion.

The distortion free energy is present in both active and passive liquid crystals,

and is responsible for driving the dynamics of topological defects in both types of

system. A simple example consists of a defect pair of one defect with charge k =+1⁄2

(a ‘comet’ defect) and one with charge k =-1⁄2 (a ‘trefoil’ defect) separated by some

distance along the x-axis of a passive nematic [179]. We will begin by assume

that the nematic is static, i.e. unable to flow. When placed in the configuration

shown in figure 1.6a, the two defects are pulled towards each other by the elastic

relaxation of the nematic until they merge and annihilate, restoring the nematic

to a defectless state. To understand why this occurs spontaneously, note that the

distortion free energy continually decreases over the course of the process. As

the defects approach, the regions of highest splay and bend become gradually

less distorted, until by the end of annihilation process Fd has decreased to zero
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1.3. Active matter: The physics of moving crowds

everywhere. In general, similar processes will lead to the attraction of defects

of opposite sign and repulsion of defects of equal sign [180, 181]4. Note however

that they cannot lead to the spontaneous decay of defects into new defect pairs,

as defect cores are themselves associated with a free energy Fs which must be

supplied from other processes for new cores to form.

The second contributor to the dynamics of a nematic system are the hydrody-

namic interactions between the nematic elements. In the case of a passive nematic

these interactions simply shape the interactions between defects, but in active

systems injection of energy by these flows can fundamentally change which defect

interactions take place. Returning to our example of the merging of a comet and

trefoil defect in a passive nematic, introducing a hydrodynamic coupling between the

director field and the velocity field and loosening the requirement that the nematic

order be globally equal results in the formation of a self-generated backflow. It

can be shown [182] that this backflow will act to advect the core of the comet

defect towards the trefoil while leaving the trefoil relatively stationary, effectively

speeding up the annihilation process. The relative contribution of this backflow to

the dynamics of annihilation largely depends upon the relative speeds of the separate

nematic reorientation and nematic flow processes. When flow is fast relative to

realignment, backflow can speed up comet movement by ≈100%.

The extent of backflow is dependent upon the activity of the nematic [179]

(figure 1.6b). Under contractile conditions (α > 0), the locally imposed flow of the

nematic outwards perpendicular to n̂ and inwards parallel to n̂ tends to amplify

this backflow, leading to a greater degree of advection and faster defect annihilation.

The contribution to the backflow in extensile systems (α < 0) on the other hand

opposes the backflow set up by the passive dynamics of the system. At sufficiently

negative values of α, this active backflow can overcome the attractive force between
4An alternative perspective is to consider the curvature of the nematic as measured relative to

the defect cores. Positively charged defects are associated with positive curvature of the nematic (it
curves towards the core), while negatively charged defects are associated with negative curvature
(it curves away from the core). As a nematic with zero curvature has the lowest free energy,
cancellation of opposite curvatures during defect annihilation is generally energetically favoured.
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Figure 1.6: Dynamics of comet and trefoil interactions in passive and active nematics.
Black lines indicate the local director of the nematic, symbols correspond to those used
in figure 1.5. a) In a passive 2D liquid crystal, defect annihilation occurs spontaneously
because movement of defects towards each other is always energetically favoured. b)
Defect interactions are altered by the inclusion of advective backflow. Keeping the elastic-
relaxation mediated element of defect attraction constant (black arrows), the advective
force generated by backflow (purple) can be adjusted by altering the activity α of the
nematic. For α = 0 (left) and α > 0 (middle), backflow adds to the attractive elastic force
between defects. When α < 0 however (right), the advective force acts in the opposite
direction to the elastic force. For α sufficiently large and negative, advective repulsion
overcomes elastic attraction and the defects move apart. c) In an extensile system with
sufficiently negative α, comet and trefoil defects are spontaneously created in the ‘on-axis’
configuration (left) and annihilate in the ‘off-axis’ configuration (right).
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1.3. Active matter: The physics of moving crowds

the defects exerted by the elastic relaxation of the nematic. At this point, the

interaction between the two defects becomes repulsive.

In this high extensile activity limit, defects can be spontaneously generated

from a (near) uniform director field. The extensile activity of the system tends to

amplify bend deformations through a positive feedback loop in which the greater

length of the bent region drives increasingly fast elongation of the region, in turn

driving greater bending. Initially this causes the creation of a wall, a region of

high bend, but if activity is sufficiently high it can cause a region of this wall to

completely ‘pinch off’. This creates a comet/trefoil pair in a configuration similar

to that shown in figure 1.6a and b, with the comet head pointing away from one

of the ‘spokes’ of the trefoil. This will be referred to as the ‘on-axis’ configuration.

Due to the advective processes described above, the comet then moves away from

the trefoil, ‘unzipping’ the remainder of the wall as it migrates along it [183].

Given the repulsive nature of the interaction between the comet and trefoil

defects in this extensile system, there may appear to be no means of removing

defects once they have been created. However, the backflows of the two defects

do interact to generate an attractive interaction provided the arrangement of the

system is modified (figure 1.6c). If the head of the comet points in between two

of the spokes (the ‘off-axis’ configuration), the hydrodynamic interaction becomes

attractive and annihilation eventually occurs [183].

At steady-state, defect creation is balanced by defect annihilation and a dynamic

‘gas’ of topological defects is formed [167]. The interactions between the backflows

of the system of defects drives and organises a network of vortices, the structure of

which closely resembles those observed in turbulent systems [167, 184]. Indeed, it

has been suggested that the turbulence-like behaviours of active matter systems

described in section 1.3.1 are generated by precisely this mechanism, as many of

the systems described there fulfil the criteria of being active nematics5. However,
5In contractile systems, most of the arguments of the preceding section can be reversed.

Backflow drives the motion of comets towards their tails rather than their heads, and causes
comet/trefoil pairs to be attractive in the on-axis configuration and repulsive in the off-axis
configuration [180]. Defect creation also occurs in the off-axis configuration, and is driven by the
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experimental validation of these ideas remains scant. Some evidence has been

provided from experiments with thin films of active microtubules, which form a

very explicit extensile active nematic [156, 185]. It has been demonstrated that the

vortex networks set up during steady-state activity in these systems have spatial

properties that are independent of the activity of the nematic, a key prediction of

the model [167]. It remains to be seen how well these models predict the behaviour

of less strongly nematic cellular systems.

1.3.2.3 Cellular systems as active nematics

The ‘nematicity’ of living active systems exists on a spectrum of orientational order

and agent aspect ratio a. High values of a tend to increase orientational order, as

longer agents align more strongly. At the high nematicity extreme lie filamenteous

active systems such as chain-forming B. subtilis [186], which are composed of agents

many times longer than they are wide (a� 100). At the other extreme are epithelial

cell sheet systems[153, 187], where cellular agents are confined to a near-isotropic

shape by mechanisms that prevent excessive elongation in the plane [188] (a < 2).

Systems based on bacillus-shaped bacteria (including P. aeruginosa, E. coli and

wild-type B. subtilis) lie somewhere between these two extremes. Individual agents

are clearly rod shaped, but not to the almost limitless extent of active filaments

[163, 166] (2 < a < 10). Motile, spindle-shaped eukaryotic cells such as Neural

Progenitor Cells (NPCs) also lie within this intermediate range [154, 173].

Active nematic theory has provided insights into the organisation and biological

properties of each of these systems. The insights into the growth of bacterial colonies

[166, 176] and eukaryotic systems [153, 173] have been particularly interesting from

a biological point of view, as the experimental systems used in their discovery

likely have close analogues in nature.

hydrodynamic instability of splay distortions in contractile systems (as opposed to the instability
of bend distortions in extensile systems) [183]. The resulting dynamics for α� 0 also resemble
turbulence [167].
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One striking feature of these cellular systems is the difference in behaviour of

cells around comet and trefoil defects. Cells tend to accumulate at comet defects

and move away from trefoil defects, a general phenomenon observed in both for

self-organised [173] and externally imposed [189, 190] topological defects. This

phenomenon leads to the formation of high-density collections of cells centred

around comet defects. In epithelial sheets, cell density can become sufficiently high

to cause the extrusion and apoptosis of cells at comets [153].

Defects also organise the spread of cells in growing active nematics. In 2D

bacterial colonies, comet defects tend point outwards, away from the centre of

the colony. As cell growth renders the system extensile, these outward-pointing

defects push forwards into unoccupied space [166, 176].

Nevertheless, the application of nematic theory to living systems is still a

relatively recent innovation. In particular, active nematic theory does not appear

to have been applied to systems of actively motile (rather than passively growing)

bacteria. In this thesis, numerous concepts from active nematic theory will be

applied to the monolayer to help us better understand its properties and behaviours.
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Organization is what you do before you do something,
so that when you do it, it’s not all mixed up.

— A.A. Milne

2
Methods for studying twitching motility

in microbial communities

Throughout this thesis, experimental results from two different systems will be

discussed (figure 2.1a): the surficial colony system grown at the agar/air interface

(figure 2.1b), and the subsurficial colony system (also known as the interstitial

biofilm [191]) grown at the agar/glass interface (figure 2.1c). In both types of colony,

cells grow and spread outwards from an initial inoculation site, taking up nutrients

and water from the underlying/overlying LB agar substrate.

The surficial colony is one of the most widespread models of biofilm development

because of its simplicity and ease of access [23, 28, 192, 193]. Its position at the

agar/air interface allows easy manipulation of community development [23, 192],

and cells can be readily harvested for further analysis [23, 193]. P. aeruginosa has

also been shown to migrate towards phospholipids in surficial colonies, making it a

popular system for the study of chemotaxis in this species [121, 122]. Subsurface

colonies are less well understood, but are popular for the quantification of twitching

motility due to the greater speed of twitching-mediated colony expansion in the

subsurface environment compared to the surficial environment. In these assays,

generally referred to as stab assays, the diameters of subsurface colonies are
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Figure 2.1: Morphologies of surficial and subsurficial WT colonies. a) (left) Schematic
of subsurficial and surficial colonies from top (upper) and side (lower) views. (right)
Magnified schematic of the morphological subregions of both colony types. b) Stereoscopic
image of a surficial colony. c) Confocal image of a subsurficial colony. Coloured bars at
top of images indicate structurally similar subregions across (a), (b) and (c).

measured and used as a proxy for twitching capacity [108, 114].

These two systems are complementary, each providing experimental insights that

the other cannot. While popular, the surficial colony system suffers from several

technical drawbacks that make it impractical for the study of single-cell movements

within biofilms. In particular, growth of surficial colonies at the agar/air interface

makes them difficult to study with high-resolution microscopy. To increase their

44



2. Methods for studying twitching motility in microbial communities

numerical aperture, high-resolution objectives typically require that a glass coverslip

be placed on top of the sample to allow application of immersion oil. This can

destroy or disrupt the structures and processes of interest. High-magnification air

objectives can be combined with confocal microscopy to provide a view of at least

the outermost layers of these communities [23, 194], but under these conditions

colonies rapidly dry out and shrink away from the focal plane. Timelapse imaging

of surficial colony dynamics is therefore highly impractical.

Fortunately, the subsurface colony overcomes many of these problems. Because

it is initiated at the agar/glass interface, the coverslip can be built into the design of

the system. Furthermore, the community is sealed off from the external environment

by the agar pad above it and the glass below, protecting it from environmental

changes such as dehydration. These characteristics make the subsurface system

amenable to long-timescale, single-cell resolution imaging. However, its relative

inaccessibility makes it inappropriate for experiments that require harvesting of cells.

In this chapter, the experimental techniques used to study these two systems

will be outlined. In addition, several control experiments will be discussed, demon-

strating that twitching motility is the main contributor to cellular movement

in both environments.

2.1 Strain preparation

2.1.1 Parental strains and labelling protocol

The clean deletion mutants and the corresponding WT strains [108, 195] used in

this thesis were labelled with CFP and YFP using a Gmr mini-Tn7 vector [196] via

a three-strain mating protocol. Briefly, P. aeruginosa colonies were grown overnight

at 42°C on an LB (Lennox, 20 g/l, Fisher Scientific) plate containing 1.5% (w/v)

agar (Difco brand, BD). These were then mixed with both the mini-Tn7 donor E.

coli strain and a SM10 λpir E. coli helper strain on the surface of a fresh LB agar

plate. The resulting mixed plate containing all three populations was incubated

overnight at 30°C after which cells were resuspended in liquid LB and then selected
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2.1. Strain preparation

Figure 2.2: Labelling of P. aeruginosa strains with cytoplasmic fluorophores has a
negligible effect on growth and motility. Shown are the leading edges of subsurficial
colonies composed of pairwise co-cultured CFP-labelled, YFP-labelled and unlabelled
∆pilH and WT cell types. Cells were imaged using epifluorescence and brightfield imaging
16 hours after inoculation.

on LB agar plates containing both gentamicin (30 mg/l) and kanamycin (25 mg/l).

The resulting CFP- and YFP-labelled strains were then directly competed with

unlabelled strains to confirm that the impact of the labelling process on growth

rate and motility was negligible (figure 2.2).

2.1.2 Cell culture

-80°C freezer stocks were streaked out on LB agar plates and incubated overnight

at 37°C. Single colonies were picked and grown overnight in liquid LB at 37°C

under continuous shaking. The following day, overnight cultures were diluted 30-

fold in fresh LB broth and returned to the 37°C shaking incubator for two hours

to obtain cells in exponential phase. Immediately before being used in colony

experiments, the optical density at 600 nm (OD600) of liquid cultures was adjusted

to 0.05 using fresh LB. For co-culture experiments, the optical density of each

individual culture was adjusted to OD600 = 0.05. These were then mixed in a
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single tube to ensure both strains were present in equal proportion. All experiments

were conducted at room temperature.

2.2 Surficial colony assays

2.2.1 Surficial colony preparation

To initialize surficial colonies, 10 µl of liquid culture prepared as described in

section 2.1.2 was inoculated onto freshly poured 1.5% (w/v) LB agar plates and

left to dry until no visible liquid remained. Lids of plates were then closed

and sealed with Parafilm (Bemis) to prevent further evaporation. Plates were

incubated on the bench.

2.2.2 Surficial colony competition assay (section 6.2)

Pairs of liquid co-culture mixtures were prepared in the combinations ∆pilH–YFP/

∆pilH–CFP, ∆pilH–YFP/WT-CFP, WT-YFP/∆pilH–CFP and WT-YFP/WT-

CFP. Surficial competitions were then initialised from these as described in section

2.2.1.

Colonies were imaged after 48 hours of competition to visualise the distribution

of the YFP- and CFP-labelled strains. P. aeruginosa natively produces secretions

called siderophores with similar excitation and emission spectra to CFP [197, 198].

While individual CFP and YFP cells can easily be distinguished in the monolayer of

subsurface colonies by using high resolution oil-immersion objectives (e.g. figure 2.2),

surficial colonies are thicker, incubated for longer, and imaged with a lower resolution

objective, making it difficult distinguish the CFP-labelled cells from the secretions.

To circumvent this problem, surficial colonies were imaged using a combination of

brightfield and YFP fluorescence, so that regions with a larger fraction of CFP-

labelled cells appeared darker grey in the merged brightfield/YFP images.

The number of cells in the inoculum was directly estimated by diluting the

starting liquid co-cultures and spreading them on LB plates. Following overnight
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incubation at 30°C, the resulting colonies were manually counted using fluorescence

to distinguish YFP and CFP-expressing colony forming units (CFUs).

A similar technique was used to estimate the number of cells of each strain

following their 48 hour-long competition. Whole surficial colonies were scraped,

resuspended in fresh media, and vortexed. The resulting suspensions were then

diluted, spread onto LB plates, and incubated overnight at 30°C. CFUs of both

strains for each colony were again counted and categorised according to fluorescence.

2.2.3 Surficial colony imaging

Epifluorescence imaging and counting of fluorescent colonies were performed on a

Zeiss Axio Zoom.V16 stereo zoom microscope with a Zeiss HXP 200 C light source

for fluorophore imaging. Confocal images of surficial colonies were taken with a

Zeiss Axio Observer outfitted with a 50× EC Epiplan Neofluar air objective, a Zeiss

MRm camera, Zeiss LSM 700 laser scanning attachment and Zeiss Zen software.

2.3 Subsurficial colony assays

2.3.1 Subsurficial colony preparation

The technique for preparation of subsurface colonies is similar to that described

in [116]. A 3 mm thick layer of 0.8% (w/v) LB agar was poured into a petri dish,

and allowed to set for 30 min on the bench. A ≈ 2 cm × 2 cm pad of solidified LB

agar was then cut from the dish and transferred to a glass slide. The top surface

of the agar pad (the surface exposed to air rather than the bottom of the plate

during agar setting) was spotted with a 1 µl drop of bacterial culture adjusted to

an optical density of OD600 = 0.05 and then allowed to dry until no visible liquid

remained. The pad was then carefully inverted and placed into a glass-bottomed

Petri dish (175 µm glass thickness, MatTek), sandwiching the cells between agar

and glass. By fully enclosing the agar pad, these Petri dishes prevent evaporation

and agar shrinkage over the course of the experiment. It was found to be essential

to use freshly poured agar to ensure consistency between experiments.
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A 0.8% concentration of agar was used because preliminary experiments with

cells that lack either pili (∆pilB) or flagella (∆flgK ) showed the resulting agar

was soft enough to permit pili-based motility, but hard enough to suppress flagella-

based motility (see section 2.5.1).

Development of subsurface colonies proceeds as follows: Immediately following

inoculation, the colony consists of a dense band of cells deposited by the coffee ring

effect at the perimeter of the spot [199], surrounding a interior region containing

a lower density of cells. Cell-free virgin agar lies outside of this dense outer ring

of cells. As the colony develops, cell division combined with pili-based motility

drives migration of cells from this outer ring into the virgin agar, expanding the

extent of the colony. Cell division in the low-density central also leads to a gradual

increase in the density of these regions. Eventually, the colony reaches a steady-

state regime, in which the outer extent of the colony is expanding at a constant

speed and the interior of the colony is composed of a uniform field of densely

packed cells. The region and time period over which imaging occurs during a given

experiment depends on the process of interest.

2.3.2 Subsurficial colony expansion assay (sections 2.5.2,
2.5.3, 6.1.2)

To minimize variation in environmental conditions between strains, during mono-

culture expansion experiments multiple unlabelled strains (WT, ∆pilB and ∆pilH )

were loaded onto a single agar pad and data acquired for all colonies simultaneously.

The outer band of cells deposited during inoculation provided a convenient reference

point from which to begin imaging; each colony was imaged using a tile containing 8

adjacent fields of view, the first of which was centred on the outer band. Subsequent

fields extended into the virgin agar outside the initial inoculation zone. Brightfield

images were taken every 2 minutes for 11 hours. As the large-scale dynamics of

the colonies were the main point of interest for these experiments, a relatively low

magnification (20×) was used to minimize the number of fields of view needed.
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2.3.3 Monolayer dynamics assay (chapter 4, sections 5.1,
6.3.1)

Monolayers of the WT and ∆pilH strains were prepared by spotting cells onto

separate agar pads. These were incubated overnight at room temperature (16

hours) to allow the steady-state regime of colony expansion to establish itself.

150× magnification brightfield images of the monolayer were then acquired at

a framerate of one image per second, yielding sufficient temporal and spatial

resolution for single-cell tracking.

2.3.4 Co-culture subsurface colony expansion assay (sec-
tion 6.2)

For subsurface colonies containing two different fluorescently labelled strains, a single

co-culture spot was applied to an agar pad. Because the liquid-grown, exponential

phase cells initially displayed relatively weak expression of cytosolic fluorophores,

this colony was incubated at room temperature for 2.5 hours prior to imaging to

allow fluorophores to accumulate. Similar to the monoculture colony expansion

experiments, each colony was imaged using a tile of 20 contiguous fields of view,

the first of which was centred on the colony edge at the beginning of imaging. The

instantaneous position of the colony edge (rsub) was then measured relative to this

initial colony edge position. To assist in quantification of colony features, a high

magnification (63×) was used, while a low imaging rate (6 frames per hour) helped

to prevent phototoxicity effects over the 8 hour course of the experiment.

2.3.5 Capture of rosette formation (section 6.3.2)

Quantifying the movement of both defects and individual cells during the process

of rosette formation was exceptionally challenging because it required imaging of

the monolayer at precisely the time and place that rosettes began to form. It

was difficult to estimate a priori where rosette formation would occur and so

where to place the microscope’s relatively small field of view to catch these events.
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These difficulties were compounded by the relatively high magnification (63×)

and temporal resolution (2 frames per minute) required to accurately capture the

dynamics of the rosette formation process.

To maximize the chances of success, multiple ∆pilH -YFP/WT-CFP subsurface

colonies were initiated with 10 µl of culture at differing starting densities in a

6-well glass bottom plate (175 µm glass thickness, MatTek). The monolayer of each

colony was then imaged sequentially, starting from the colony initiated with the

highest starting OD600. As rosettes form earlier in colonies inoculated at higher

densities, this provided multiple opportunities to image the monolayer at the point

at which multiple rosettes formed.

Initially, attempts were made to take timelapse images of rosette formation with

confocal microscopy so the distribution of the two strains could be continuously

monitored. However, repeated exposure to the laser light rapidly bleached the cells

and adversely affected their movement. Instead, the dynamics of rosette formation

were imaged using brightfield microscopy for one hour, allowing the movement

of all cells in the field of view to be monitored. It was then possible to record

the three-dimensional structure of one rosette by quickly switching to confocal

microscopy following brightfield imaging.

2.3.6 Low-density assays (sections 2.5.1, 5.1.1, 5.2.3)

The movement and size of isolated cells were also quantified at low packing fractions

using separate subsurface experiments. Subsurficial colonies were prepared as

usual, but cells were imaged at the centre of the initial inoculation spot, where

the cell packing fractions were approximately 50-fold smaller than observed in the

monolayer of a subsurface colony at steady-state. Collective effects at this density

are negligible [200]. To ensure cells had sufficient time to adapt to the surface

[112], imaging was initiated 3 hours post-inoculation. 63× magnification and a

framerate of one second were used to image cells.
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2.3.7 Cell segregation assay (section 5.2)

Liquid co-cultures of ∆pilH -YFP/ ∆pilH -CFP, ∆pilH -YFP/ WT-CFP, and WT-

YFP/WT-CFP were prepared and spotted onto different positions on a single agar

pad. Measurements of segregation dynamics were initiated in a similar fashion as for

the low-density assays (section 2.3.6), with imaging initialised within the low-density

central region of each colony using a magnification of 63×. However, instead of a

single field of view, a tile consisting of three fields of view was used for each colony.

A framerate of 6 frames per hour was used to avoid phototoxicity effects.

2.3.8 Subsurface colony imaging

Brightfield imaging of subsurficial colonies was performed using a Zeiss Axio Observer

outfitted with a Zeiss MRm camera, Definite Focus system, Zeiss Zen software and

either a 20× Plan Apochromat air objective or 63× Plan Apochromat oil-immersion

objective. For epifluoresence imaging the same system was used, using a Zeiss HXP

120 light source for excitation. Confocal images were recorded with a Zeiss LSM

700 laser scanning attachment, using the 63× Plan Apochromat oil objective for

subsurface colonies and a 50× EC Epiplan Neofluar air objective for surficial colonies.

To facilitate simultaneous cell and defect tracking in the monolayer, a Nikon Ti-E

inverted microscope outfitted with Plan Apochromat 100× brightfield objective,

a Hamamatsu Flash 4.0 v2 camera and NIS-Elements software was used. The

magnification was further increased using the microscope body’s 1.5× zoom feature,

yielding a total magnification of 150×.

2.4 Additional experiments

2.4.1 Liquid culture competition assay (section 6.1.2)

Following standard preparation (section 2.1.2), the CFP-labelled WT reference strain

and the YFP-labelled test strains (∆pilH , ∆pilB and WT) were diluted down to an

OD600 of 0.02 using fresh LB and mixed at a starting ratio of 1:1 test to reference
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cells. Co-cultures were then placed into a shaking incubator at room temperature.

Samples of 50 µl were taken at 0, 210 and 420 minutes. Densities of YFP and CFP

expressing cells at each time point were estimated using the same CFU counting

method as described for the surficial colony competition assay (section 2.2.2).

2.4.2 Liquid culture cell length measurement (section 5.1.2)

To measure the lengths of cells in liquid culture, exponentially growing ∆pilH -YFP

cells were combined with WT-CFP cells at a 1:1 ratio in liquid LB. These were

fixed with 3% paraformaldehyde and then diluted in phosphate buffered saline

(PBS, Fisher Scientific) in 96-well plates with optical bottoms (Nunc brand, Thermo

Scientific). Plates were then centrifuged to ensure cells were lying flat against the

optical bottoms of the wells and cells imaged using brightfield, YFP and CFP

channels at 63× magnification. Cell lengths were then measured using FAST (see

chapter 3), using the relative levels of YFP and CFP fluorescence to distinguish

the WT and ∆pilH populations.

2.5 Control experiments

2.5.1 Determination of an optimal agar concentration for
isolating twitching motility

Functional flagella are important for establishment of biofilms by P. aeruginosa [201,

202] and also have an important role in determining overall biofilm architecture

[203]. To ensure that these functions were not lost, the majority of strains used

throughout this thesis retain active flagella. However, flagella can have a substantial

role in driving plate-based cell motility if the concentration of agar in the underlying

substrate is low enough: for concentrations below ≈ 0.3%, flagellated cells can

swim through water-filled channels within the agar, while at higher concentrations

(≈ 0.3% to 1.0%), flagella-mediated swarming can occur at the air/agar interface

[204]. To isolate pili-based motility as a driver of cell movement, a means of

suppressing these flagella-based motility mechanisms was required.
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Figure 2.3: Selection of an optimal agar concentration for the study of twitching motility.
a,b) WT and motility-defective mutant strains were mixed in low-density subsurface
environments composed of differing agar concentrations. Displayed are the mean ± s.d.
cell speed for each population at each agar concentration tested. Separate experiments
were performed on WT (ATCC)/∆pilB mixtures (a) and on WT (Kolter)/∆flgK mixtures
(b). Two-tailed t-tests were performed to evaluate if the average cell speed of the WT
was significantly different from that of the mutant in each environment: ** indicates
p < 10−30, * p < 10−7, n.s. p > 0.05.

To test the relative roles of pili-based versus flagella-based motility within the

subsurface environment at different agar concentrations, low-density subsurface

assays were prepared containing a mixture of WT cells and cells lacking either flagella

(∆flgK , [201]) or pili (∆pilB, [108])1. Strains were distinguished by fluorescence,

with ∆flgK cells labelled with GFP and ∆pilB cells labelled with YFP. These

low-density cultures were imaged for 30 min at 1 frame per second, allowing

single-cell movements to be tracked.

At the very lowest agar concentration tested (0.6%), flagellated WT cells

clearly displayed motility greater than that of non-flagellated ∆flgK cells. An agar

concentration was therefore sought that suppressed this flagella-based movement

while permitting pili-based motility (figure 2.3). At a concentration of 0.8% agar, the
1Although both the ∆flgK and Pil-Chp mutants were derived from the same ‘WT’ PAO1

isolate, some genetic divergence has occurred between the ancestral PAO1 cell line and the PAO1
backgrounds used to produce the ∆flgK and Pil-Chp mutants (which were generated in separate
labs). The WT associated with the ∆flgK mutant will therefore be referred to as the ‘Kolter’
background, while the WT associated with the Pil-Chp mutants will be referred to as the ‘ATCC’
background.
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average speed of the ∆flgK mutant was indistinguishable from the WT (p > 0.05,

two-tailed t-test), suggesting that flagellar motility was effectively prevented in this

environment. At the same agar concentration the average speed of the ∆pilB mutant

was significantly smaller than the WT (p < 10−30, two-tailed t-test), suggesting that

pili were still able to drive single-cell movement. The standard agar concentration

for the subsurface assay was therefore chosen as 0.8%.

2.5.2 Subsurface colony expansion is driven by twitching
rather than flagellar motility

Having established the optimal agar concentration for isolating subsurface pili-based

motility at the single-cell level, it was next necessary to confirm that pili were

also the dominant contributors to the motility of high-density collectives in the

same environment. To test this, the expansion rates of subsurface ∆flgK and WT

colonies was measured (figure 2.4). This revealed that the loss of flagella resulted

in an earlier transition to a steady-state colony expansion speed compared to the

WT, consistent with previous studies investigating single-cell twitching motility

in flagellar mutants [20, 136]. However, the steady-state expansion speed was

similar between the WT and ∆flgK , consistent with the finding that the motility of

isolated ∆flgK and WT cells was indistinguishable at the same agar concentrations

(figure 2.3b). On the other hand, complete removal of TFP using a ∆pilB mutant

resulted in almost complete abolishment of subsurface motility (section 6.1.2).

Taken together, these results demonstrate that pili-based motility is the dominant

contributor to the spread of subsurface colonies.

2.5.3 Surficial and subsurficial colonies are two viewpoints
of the same system

As discussed in the introduction to this chapter, results from the subsurficial and

surficial environments will be directly compared throughout this thesis. But for

these comparisons to be valid, it must first be demonstrated that both systems

evolve according to a single underlying set of dynamical processes. To assess if this
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Figure 2.4: Flagella do not contribute to subsurficial colony expansion. Measurements
of colony radius, rsub (a), and colony expansion rate, drsubdt (b) were made for both the
flagellated (WT) and non-flagellated (∆flgK ) strains. The discontinuity in the WT data
in (b) at around 180 min is an artifact of the colony edge detection algorithm becoming
trapped at a stitching seam in one replicate (see section 6.1.1). Shaded regions indicate
the mean ± s.d. of n = 3 biological replicates.

is the case, we can ask if the properties of colonies in the two environments are

equivalent. Is the expansion of both types of colony driven primarily by twitching

motility? And does the process of colony expansion lead to the formation of similar

colony architectures in both environments?

At first glance, the surficial and subsurficial colonies appear to be quite distinct.

Surface colonies grow outwards more slowly than subsurficial colonies, and tend

to form thicker communities due to the lack of restraining agar above them.

Nevertheless, imaging of the leading edge of both surficial and subsurficial colonies

demonstrates that both colony types form structurally similar zones of expansion

(figure 2.1b,c). In both cases, the colony edge is formed of loose packs of cells aligned

parallel to the plane of the agar surface, giving way to a densely-packed monolayer

of cells. Behind this, three-dimensional structures begin to form as the monolayer

buckles and cells are pushed out of it. Eventually, behind this ‘transition’ region, a

relatively homogeneous three dimensional region of densely packed cells dominates

the remainder of the colony. The size of most of these subregions differs between

the colony types, but in both the monolayer is consistently ≈100 µm in width.
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Figure 2.5: The microscopic substructures of WT surficial and subsurfical colonies are
similar. Shown are high magnification confocal images of subregions in WT surficial
(lower) and subsurficial (upper) colonies. Subregions correspond to those defined in figure
2.1 for both colony types.

Higher magnification imaging with confocal microscopy also revealed similarities

in the single-cell structuring of the different subregions (figure 2.5). In both colony

types, the ‘transition’ region represents a gradient of cell verticalisation: beginning in

the monolayer, where all cells are aligned with the plane of the coverslip, increasing

numbers of cells adopt a vertical conformation as the ‘transition’ region is moved

through towards the centre of the colony. Verticalisation increases until the ‘dense’

region is reached, where cells are tightly packed together into patches organised as

hexagonal lattices oriented perpendicular to the plane of the agar surface.

Because of the importance of range expansion for determining the success

bacterial populations (section 1.1.1), it was also important to establish that colony

expansion in both environments was predominantly mediated by twitching motility.

To test the relationship between surficial and subsurfical expansion dynamics, colony

expansion rates in a range of Pil-Chp mutants (∆chpB, ∆pilB, ∆pilG, ∆pilH ,

∆pilK, ∆pilT and ∆pilU ) and the flagellar knockout (∆flgK ) as well as the two

WT backgrounds (Kolter and ATCC) were compared between the two environments
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Figure 2.6: Twitching motility drives colony expansion and defines colony structure in
both the surficial and subsurficial environments. a) Comparison of surficial and subsurficial
colony expansion rates for indicated strains. Points and error bars indicate mean ± s.d.
for n = 3 replicates (subsurficial colonies) and n = 6 replicates (surficial colonies). b)
Images of leading edge of representative surficial colonies of indicated strains following 48
hours of growth.

(figure 2.6a). For the most part, the surficial/subsurfical correspondence was good.

Mutants unable to retract pili (∆pilT, ∆pilU ) were broadly reliant upon growth-

based expansion in both environments, while mutants with less severely impacted

twitching motility [114] (∆chpB, ∆pilK ) possessed a correspondingly smaller defect

in their ability to spread in both systems. ∆pilH displayed an intermediate

phenotype. Flagella were also unimportant in the surficial environment, with the

surficial expansion rate of ∆flgK being indistinguishable from its WT counterpart.

The exceptions to this general correspondence were the ∆pilB and ∆pilG

colonies, which were able to expand far more effectively in the surficial than in

the subsurficial environment. Indeed, the expansion rate of ∆pilB in the surficial

environment is somewhat faster than that of the WT. This seems to be due to

the loss of TFP-mediated adhesion between cells, which can drive the aggregation

of cells [205, 206]. Supporting this interpretation, images of ∆pilB and ∆pilG

surficial colony edges revealed terrace-like structures distinct from the morphology

of the leading-edge monolayer observed in WT colonies (figure 2.6b), suggesting

58



2. Methods for studying twitching motility in microbial communities

their exploitation of a separate expansion mechanism. This may be a form of

sliding motility [25], although the precise physical processes responsible for the

generation of terraces remain to be elucidated.

Cell-cell adhesion appears to be negligible within the subsurface environment,

possibly because cell-cell contact is reduced by the confinement of cells to a

monolayer. The subsurface environment therefore remains the gold standard for

isolating twitching motility. Because of the existence of the twitching-independent

colony expansion mechanism in the surficial environment, measurements of the ∆pilB

and ∆pilG strains in the surficial environment will be avoided in subsequent chapters.
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Never confuse movement with action.

— Ernest Hemingway

3
FAST, a new software for tracking cells in

high-density environments

Our understanding of microbial communities has been immensely improved by

microscopic probing of their substructures (e.g. [22, 207]). Unfortunately, many

studies only provide a static snapshot of community structure, telling us little about

the dynamic processes that sculpt them. If we are to understand how individual-scale

behaviours cause the emergence of these higher-level structures, we need to be able

to monitor individuals dynamically within the collective. Improvements in biological,

microfluidic and imaging technologies have begun to allow automated monitoring of

living microbial communities over long periods of time (e.g. [20, 205, 208]), providing

an experimental means of addressing these problems. But such improvements to

data quality have led to other challenges - most pressingly, the resulting image

datasets have now become so large that manual approaches to measuring cellular

behaviours have become prohibitively time-consuming. Automated methods for

measuring the behaviours of individuals have therefore become indispensable.

The key analytical problem to solve is automated isolation and following of

individuals; in other words we must track them. This will prove to be an essential

task at various points throughout this thesis. While several studies have previously
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described single-cell tracking in motile bacterial systems (e.g. [152, 207, 209]),

the methods used are unable to deal with the unique challenges posed by P.

aeruginosa monolayers. Two properties of the monolayer are particularly problematic

in combination: it has extremely high density, and cell movement within it is

very rapid. Together, these two properties can make tracking of cells across

multiple frames highly ambiguous.

In this chapter, I will describe the elements of a new Matlab-based tracking

algorithm called FAST (Feature-Assisted Segmenter/Tracker). To achieve high-

quality tracking, a robust segmentation algorithm is combined with a novel cell

tracking algorithm. Through machine learning, this algorithm is able to automat-

ically assess the usefulness of different cell features as indicators of cell identity.

This information is then used to fairly combine multiple features into a single

measure of cell similarity between frames, substantially reducing the ambiguity of

assignment. This process allows high-fidelity tracking to be achieved with minimal

input from the user, in contrast to many pre-existing tracking algorithms. In

addition, FAST includes modules that permit data exploration and validation

following the generation of tracks. FAST will be used at many points in later

chapters as the basis for addressing a diverse range of questions.

3.1 Overview of previous tracking approaches

The first stage of any tracking algorithm is to determine which pixels in an image

belong to objects (in our case, cells) and which pixels correspond to the background.

It is also necessary to separate neighbouring objects. To achieve this, accurate

segmentations are required. These assign sets of pixels to distinct objects within

the image. Unsurprisingly, because this is such a fundamental stage of data analysis

across a wide variety of fields, a number of different approaches have been developed

to perform segmentation. An exhaustive list of these methods will not be provided

here, but in general segmentation can be split into image driven and model

driven approaches [210]. Image driven approaches use measurements of statistical
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properties of images (e.g. image gradients or edges) to determine segmentation

boundaries, while model driven approaches utilize some set of assumptions about

the properties of objects (e.g. colour or shape) that can be used to distinguish

them from the background.

Two broad frameworks for cell tracking dominate previous approaches [211,

212]: (1) tracking by evolution and (2) tracking by detection. Tracking by

evolution takes a segmentation generated for an initial frame and propagates it to

the next image in the timeseries. An algorithm then morphs the boundary of the

segmentation from the initial frame, fitting it to the image of the object in the next

frame. The resulting best-fit segmentation is then propagated to the next frame,

allowing a theoretically unlimited set of segmentations to be evolved from the initial

segmentation. There are numerous boundary fitting algorithms in use, but in general

they apply some energy minimisation function to the boundary that incorporates a

combination of morphological (e.g. boundary curvature) and image-associated (e.g.

image gradients) measures. These algorithms are generally known as ‘snakes’ [213]

or ‘active contours’, of which the level-set method [214] is a popular example.

These approaches elegantly link the problem of tracking to the problem of

segmentation, and are particularly successful at tracking morphologically complex

objects [209]. Level-set methods are also particularly well suited for handling cell

divisions [215]. However, the performance of these algorithms is poor when applied

to high-density and high-motility datasets [216, 217], making them inappropriate

for analysing the P. aeruginosa monolayer. They are also relatively computationally

expensive, rendering them impractically slow for analysing the very large datasets

associated with monolayers of bacteria.

The second and more widespread approach is to first segment (‘detect’) each

object in every frame and then link objects between consecutive frames based on

measurements of properties that remain stable over time. Numerous approaches

have previously been applied to perform this linking, including simple Euclidean

distance nearest-neighbour matching algorithms [218], template matching [218],
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object overlap [219] and mean-shift based approaches [220]. False negatives (‘gaps’)

and false positives (‘clutter’) accidentally generated in the object detection stage

present a major problem for linking algorithms, as they can lead to the assignment of

false links. Faulty segmentations can also merge objects that overlap (‘occlusions’

[221]), requiring techniques to bridge tracks across these ambiguous timepoints.

Collectively, these segmentation errors can be referred to as mis-segmentations.

Further problems are caused by objects moving into or out of the field of view, for

which tracks must be initiated or terminated. Again, a large number of different

techniques have been applied to resolve these problems. Prediction of an object’s

future location based on an internal model of its motion can be used to bridge

gaps in tracks generated by object occlusion [221, 222]. This helps resolve tracking

errors when objects motion is smooth, but breaks down when this assumption is

violated. The Multiple Hypothesis Tracker (MHT) technique is particularly well

suited for assigning tracks correctly in systems with high levels of clutter [223, 224],

but suffers from a combinatorial explosion in the number of hypotheses that must

be considered as the depth of search is increased.

One popular means of improving object linking in tracking by detection frame-

works is inclusion of additional feature data associated with segmented objects

[212, 225]. Often, these additional features are the properties of interest, and must

be extracted regardless of their use in tracking - they can be as diverse as the

organization of intracellular microtubules in budding yeast [226] to the plastic

morphology of amoeboid slime mold cells [227]. An important consideration in

feature-based approaches is the stability and uniqueness of the feature set. Animals,

for example, remain fairly fixed in appearance over the course of an experiment.

Machine learning can therefore be used to define an image-based ‘fingerprint’ of each

individual that can be used for tracking even when position-based approaches break

down completely [228]. On the other hand, microbial cells tend to be highly plastic in

their appearance, increasing in size and changing shape over a single imaging series.

Feature-based cell tracking techniques must be able to compensate for this variability.
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Figure 3.1: Segmentation workflow. a) Original phase contrast image from a cropped
portion of a P. aeruginosa monolayer. b) Result of ridge detection algorithm when applied
to image (a). c) Result of direct intensity thresholding of a. d) Result of binary addition
of (c) and the inverse of (b). e) Result of morphological watershed when applied to
(d). Yellow lines indicate boundaries already present in (d), red lines indicate watershed
derived boundaries. f) Final segmentation. Different colours indicate separately segmented
cells, with colour assigned according to each cell’s x-coordinate.

Unfortunately, increasing the number of features generally also increases the

number of parameters that need to be set by the end-user, as each feature must

be weighted individually. This can make feature-based approaches unwieldy for

practical applications.

A method for tracking P. aeruginosa cells has previously been described [229],

but is applicable only to relatively low-density systems. We will require novel

segmentation and tracking techniques to overcome the challenges posed by the

high-density experimental systems utilised throughout this thesis.

FAST utilises a tracking by detection framework. We therefore begin with

image segmentation and object detection.

3.2 Segmentation and feature detection

The first stage of the image analysis section of FAST is segmentation of a brightfield

or phase contrast image. Cells within the monolayer are very closely packed (figure

3.1a), rendering most segmentation methods ineffective. Following an initial filtering

with a 5×5 median filter to reduce pixel noise, three methods are combined to solve
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Figure 3.2: Example segmentations generated by FAST. The left hand image of
each panel shows the original image, while the right shows an overlay of the resulting
segmentation. a) P. aeruginosa monolayer. b) Pears [234]. c) 2D print of agar droplets
[235]. d) A mixture of different sweets [236].

this difficult segmentation problem: firstly, cells are segmented using intensity-based

thresholding (figure 3.1c) and ridge detection [230] (figure 3.1b). The results of

these two segmentations are then combined using a pixelwise OR filter (figure 3.1d),

and a final morphological watershed segmentation step performed [231] (figure 3.1e).

This allows the separation of partially septated and touching cells.

This combination of analytical stages is sufficient to segment a wide range of

different, closely packed objects from a variety of settings (figure 3.2). This pixel-

based approach does not require user input, unlike such methods as deformable

contours [232], nor does it constrain objects to conform to a specific morphological

model, unlike many model-driven approaches (e.g. [233]). While these properties do

mean that the occasional mis-segmentation is allowed to pass into later processing

stages, this disadvantage is outweighed by the segmentation algorithm’s speed and

flexibility. As will be described in later sections, these mis-segmentations can be

detected and removed during the tracking phase of the pipeline.

The second stage of the pipeline takes previously extracted segmentations and

measures the features of associated objects (figure 3.3). The term ‘feature’ is generic
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Figure 3.3: Measurement of features associated with the object i at time t. The example
cell shown is from a WT-YFP/WT-CFP mixture of P. aeruginosa. Each cell was imaged
in three channels: channel 1, brightfield, channel 2, cytosolic YFP and channel 3, cytosolic
CFP. The cell segmentation, based on the brightfield image, is also shown. In each channel
n, the mean intensity mn and the standard deviation sn of the set of pixels within the
segmentation mask is measured, along with the total area of the mask A. The best fitting
ellipse to the segmentation boundary is also found, and used to estimate the position
of the cell centroid (x, y), length LM , width Lm and angle made with the horizontal θ.
These features are combined into the final feature vector ft,i.

and can in principle be applied to any quantitative property of an object, however,

here it is constrained to object centroid (x,y), length, width, area, orientation, and

the mean and standard deviation of the pixel intensities associated with the object

in each imaging channel. Centroids, lengths, widths and orientations are quantified

as the parameters of the best-fit ellipse measured over the object’s boundary pixels.

To measure the mean and standard deviation of the object’s pixel intensities in

each channel, the object’s segmentation is first applied as a mask, defining a set of

pixels in each channel over which these statistics are calculated. Additionally, object

area is measured as the total number of pixels in the object’s mask. Following

measurement, these features are stored as a feature vector ft,i for object i in frame

t. In subsequent sections, the subscript i will generally be omitted for brevity.

Additionally, depending on context, ft will sometimes be expressed as ft,φ, allowing

explicit indexing over each feature φ.
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These features have been chosen to be the most widely useful over a range of

different applications, but for more specialized applications more complex features

can be used. For example, as discussed in the introduction (section 1.3.2.1),

the charge of a 2D topological defect is invariant and is therefore a very useful

feature for tracking the motion of defects over time. Simply by appending this

value to the feature vector, we can exploit the consistency of the defect charge

to improve defect tracking performance. In chapter 4, exactly this approach will

be taken to improve defect tracking.

3.3 The feature tracking algorithm

The next stage of FAST is object tracking. In this section, the theoretical framework

used in the new tracking algorithm will be outlined.

3.3.1 The difficulties of tracking

As a concrete example of the problems posed by single-cell tracking of high-density,

high-velocity datasets, figure 3.4a represents a theoretical dataset consisting of a set

of point-like particles flowing from the top to the bottom of a square imaging frame.

It will prove useful throughout this chapter to consider moving objects from two

perspectives: the first is the feature space representation f (figure 3.4b), which

represents the absolute instantaneous positions of objects in the global feature space.

The second is the displacement space representation ∆f (figure 3.4c), which

simply represents the movement of objects within f between two frames relative

to their positions in frame 1. For illustrative purposes, figure 3.4 is restricted to

just two features, the object centroid coordinates (x and y). However, in general

both f and ∆f are composed of as many dimensions as there are features.

As discussed in section 3.1, the main challenge for tracking-by-detection frame-

works is suppression of incorrect links generated by detection errors, object overlap

and movement of objects into/out of the frame. These result in spurious potential

links (‘negatives’) being generated by distance-based metrics. To minimise spurious

68



3. FAST, a new software for tracking cells in high-density environments

links, the obvious approach is to apply a distance threshold in ∆f such that links that

fall outside of its range are suppressed. Unfortunately, we can see that this dataset

poses several challenges that render this simplistic approach non-optimal. Firstly,

there is a motion bias towards the bottom of the frame. Using the simple distance

threshold would therefore either unfairly filter out large movements downwards

or incorrectly assign links implying the upward movement of objects. This is the

problem of feature drift. Additionally, movements are more tightly clustered along

the x-direction than the y-direction. Even if drift is accounted for, any isotropic

window will either be too lenient in accepting large changes in x, or too harsh

in rejecting large changes in y. This is the problem of feature anisotropy. The

optimal acceptance window therefore needs to be shifted (to account for drift) and

reshaped into an ellipse (to account for anisotropy).

A further problem comes from attempting to use additional features to improve

the tracking algorithm. In the example shown, each object is also associated with a

brightness m, perhaps indicating the quantity of a fluorescent protein within the

object. If m was both constant and perfectly measured, it would be possible to

reconstruct tracks based purely on it alone. Analogously, we might imagine placing

a set of balls of unique shape and colour into an opaque box and shaking it - even

though we would not be able to monitor the positions of the balls over time, we

would still be able to determine which ball at box opening corresponded to which

ball at box closing based on its unique appearance. In reality however, the brightness

of these particles is subject to both measurement noise and variability. How can

this brightness information be optimally integrated with the positional information?

This may appear to be a distinct problem, but we can actually understand it in

terms of feature drift and anisotropy. To see this, imagine the axis ∆x in figure 3.4b

was replaced with the change in particle brightness between frames, ∆m. Let us

suppose that measurement ofm causes photobleaching. We would then expect to see

that this new data cloud was biased towards negative ∆m - in other words, that the

feature m had drifted between frames. In addition, noise will generate uncertainty in
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Figure 3.4: Illustration of concepts used in FAST’s tracking algorithm. a) Illustrative
theoretical tracking dataset. Particles (green) move between two separate frames in dataset
(arrows) from initial positions (white circles) to final positions (grey circles). Tracking is
hampered by detection errors, movement of objects into and out of the imaging frame, and
apparent merging of touching objects. b) Feature space representation (f) of data shown
in (a). Centroid coordinates x and y are used in this example for ease of understanding,
but in general x and y can be supplemented or replaced by any feature. For example, a
third feature dimension, object brightness (m), is not shown here. c) Displacement space
representation (∆f) of x and y. ‘True negatives’ are incorrect links that are rejected by
the discrimination threshold βt, ‘true positives’ are correct links that are accepted, ‘false
negatives’ are correct links that are rejected and ‘false positives’ are incorrect links that
are accepted. The ‘optimal threshold’ indicates a theoretical window in this space that
would optimally discriminate between correct and incorrect links.

∆m, resulting in a spread about its ‘true’ value. The problem therefore becomes how

to combine this uncertainty in ∆m with that in ∆x and ∆y, which is exactly the

same as our problem of trying to compare the relative uncertainties of ∆x and ∆y.

Another problem is that ∆f is dynamic. For example, all the particles in the

field of view may begin drifting upwards instead of down, average particle speed

may increase, or the density of the system may change. Any adjustments made

to compensate for the problems of drift and anisotropy must therefore be able to

respond to these dynamic changes in the statistical properties of the system.

To formalise this discussion, let us assume that ∆ft is drawn from a multivariate

normal distribution N (µt,Σt) with mean vector µt and covariance matrix Σt.

In general, the distribution for ∆f for any given feature f need not be normal.

However, the normal distribution is usually a good approximation, and the tools
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for manipulating the multivariate normal distribution are well developed. The

evolution of objects in f can then simply be represented as:

ft+1 = ft +wt, (3.1)

where wt indicates a random vector drawn from the distribution N (µt,Σt). The

frame index t is used here to emphasise that both µt and Σt can vary dynam-

ically through time.

This formulation is a very general way of expressing object motion through f .

Not only can it used to describe first-order features such as object position and

orientation, it can also be used to describe higher-order features such as object

velocity, acceleration and angular velocity. This allows motion correspondence-based

approaches [221] to be applied within the same framework. In the following sections,

I will develop techniques to solve the previously described problems associated with

high-density object tracking using this framework.

3.3.2 Overview of approach

FAST adopts a two pronged approach to tracking (figure 3.5). The first prong is to

make all features directly comparable by shifting and rescaling f to generate the

normalised feature space f̂t. The corresponding normalised displacement

space ∆f̂t is isotropic and zero-centred, resolving the problems of feature drift and

anisotropy. ∆f̂t is normalised on a frame-by-frame basis, allowing dynamic changes

in the statistical properties of features to be captured and accounted for.

The second prong is to adaptively vary the detection threshold to account for

variations in system density and feature usefulness. To assist in this second task,

the concept of feature reliability is introduced. This is a joint measure of the noise

associated with each feature and the range of values it can take, and represents the

usefulness of each feature for distinguishing different link options in the normalised

displacement space. Reliability can be combined across features to give a single

trackability score for each timepoint. This is a user-directed heuristic measure
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Figure 3.5: Flowchart of major elements of the feature tracking algorithm. Different
versions of the feature space (raw, f , regularised, f̄ and normalised, f̂) are indicated at
the points in the algorithm at which they are generated.

of dataset quality which can be used for quality control and automated purging

of low-quality sections of tracking datasets.

At the core of the FAST tracking algorithm is a machine learning protocol that

automatically determines the necessary dataset statistics. A training set of object

links is first created using a high stringency, classical tracking algorithm. This

training set is then used to estimate the reliability of each feature and the trackability

of the dataset, as well as the values of µt and Σt. These statistics are then used to

generate ∆f̂t and to calculate the adaptive threshold for each timepoint.

For simplicity, I will here limit the description of the tracking algorithm to

the case that Σt is diagonal, i.e. that all features are independent from each

other. Extension of the algorithm to the case where correlations exist between

features is fairly simple, and is provided in Appendix A. This is the version of

the algorithm employed by the full version of FAST. However, as we will see,

the assumption of feature independence makes the role of each mathematical

operation easier to understand.
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3.3.3 Collection of training dataset

In the first stage of the tracking algorithm, the most easy to track objects in a

given dataset are linked, and the resultant dataset mined for feature statistics. To

provide some degree of balance between different features during training dataset

creation feature scaling is first applied [237]. Defining the maximum value of each

feature in each frame to be max(ft,φ) and the minimum value to be min(ft,φ), the

range of all features is set to between 0 and 1 using the equation:

f̄t,φ = ft,φ −min(ft,φ)
max(ft,φ)−min(ft,φ) . (3.2)

f̄t,φ will be referred to as the regularised feature space. A list of putative

links between objects in frame t and t+ 1 is then created, pairing cells according

to the minimal Euclidean distance in the regularised feature space between them.

To be explicit, the matrix Qi,j of Euclidean distances between objects i in frame

t and j in frame t + 1 is calculated as:

Qi,j = ‖f̄t+1,j − f̄t,i‖, (3.3)

where ‖ · ‖ indicates the Euclidean norm of the contents. Next, the unique score

qi is found that satisfies the equation:

qi = min
j∈Ct+1

(Qi,j), (3.4)

where Ct+1 is the set of objects present in frame t+ 1. The links with scores qi are

then sorted by score, and the proportion, P , of lowest scoring links classified as

correct. P is the first user-adjustable parameter of the algorithm.

One problem with this approach is that equation 3.2 tends weight low-quality

and high-quality features equally. This can severely limit the accuracy of links

based on the simple similarity metric qi. To avoid this problem, the training dataset

creation algorithm can be restricted to the x and y coordinates of the object centroid.

These are generally quite robust features with similar amounts of noise, and can be
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used for the initial approximation of tracks. The user is therefore provided with the

option of using all features during the low-fidelity linking stage, or just the centroid.

3.3.4 Creation of normalised feature space

Next, these preliminary links i-j are used to estimate ∆ft,i simply as ∆ft,i =

ft+1,j − ft,i. From this displacement space, µt can be calculated as the sample

mean of each feature:

µt = 1
nt

nt∑
i=1

∆ft,i, (3.5)

where nt represents the total number of training links made from timepoint t.

Under the simplifying assumption that Σt is diagonal, each element of the

diagonal will represent the variance of the corresponding element of ∆ft. To simplify

notation, these variances will be written as the vector σ2
t . These are then given as:

σ2
t = 1

(nt − 1)

nt∑
i=1

(∆ft,i − µt)2. (3.6)

The normalised feature space can now be calculated as:

f̂t,φ = ft,φ
σt,φ

, (3.7a)

f̂t+1,φ = ft+1,φ − µt,φ
σt,φ

. (3.7b)

3.3.5 Estimation of adaptive linking threshold

Feature normalisation provides a means of fairly weighting all features automatically.

In effect, instead of drawing the optimal threshold shown in figure 3.4c, we have

instead shifted and rescaled the points such that the ‘true’ displacements fit within

the isotropic (circular) discrimination threshold. This is extremely valuable, as

it means we only need to externally define a single parameter (the radius of this

threshold) rather than a separate parameter for each feature. We can therefore

avoid the very large numbers of parameters generally associated with multi-feature
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approaches. However, at the moment we have no means of deciding what value

this distance threshold (denoted here as βt) should take to optimally reject false

links while accepting true links.

In FAST, βt is adaptively chosen to account for the problem of link ambiguity.

As an informal introduction to this problem, consider the system in figure 3.6a.

Two objects are moving through a normalised feature space between frame t and

t+ 1 - our task, as usual, is to assign links between the two frames. The best guess

we can possibly make based on the information available to us is to link the nearest

neighbours in this feature space. However, in reality, this assignment is incorrect.

A good tracking algorithm should therefore be able to detect instances where such

ambiguous assignments might occur, and suppress linking in these cases1.

Why did the best guess fail? There are three contributory factors: movement

unpredictablity, object proximity and insufficient information. If the objects had

been further apart, movement had been less noisy, or more feature information

had been available to distinguish the objects, the correct links would have been

easier to make. To a certain extent, we have already accounted for movement

unpredictability by normalising the feature space - the effect of noise will now at

least be isotropic and zero-centred, allowing us to directly compare the contribution

to ambiguity by each feature. But a measure still needs to be defined that allows us

to estimate object proximity within this space. This is achieved within the FAST

framework by defining object density within the normalised feature space.

To define a density, we require a measure of system volume. In this case, the

domain of the normalised feature space (the range of object positions available

within the space) will be approximated as a Φ-dimensional hyperrectangle, where

Φ is the total number of features in use. The (hyper-)volume of this object will

then be used as the volume of the system. To measure this volume, the extent et,φ
of each feature is first measured as double the inter-quartile range (IQR) of the

1Note that these ambiguous links are distinct from the false links caused by mis-segmentations
etc. as discussed in section 3.3. These are in principle separate problems, but in practise a choice
of βt stringent enough to suppress ambiguous links is also stringent enough to suppress false links.
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Figure 3.6: The problem of link ambiguity. a) Two objects in feature space at time t (red)
move to new positions at time t+ 1 (blue). The correct links differ from those assigned by
the optimal guess based on available information. b) Partitioning of normalised feature
space into regions of ambiguity by centroid features x and y from example shown in figure
3.4. Each region of ambiguity is 4 standard deviations wide in each feature direction,
corresponding to a 95% probability that an object at its centre will remain within its
range in the next frame. The green region indicates a case where multiple objects are
within a single region of ambiguity. The trackability of this dataset (number of regions =
40, number of objects = 13) is 0.49.

feature across all objects at a given timepoint (in ft). The IQR is used in place of

the full range as it is robust to statistical outliers and differing underlying feature

distributions. Feature reliability rt,φ is then simply defined as:

rt,φ = et,φ
σt,φ

. (3.8)

Reliability is a scale-invariant and dimensionless statistic, allowing it to be

directly compared between different features. Note that division by σt,φ occurs

in both equation 3.7a and equation 3.8 - rt,φ is therefore a metric of the size of

the normalised feature space.

As a loose conceptualisation, reliability can be regarded as the number of

regions of ambiguity each feature partitions the feature space into. If two or

more objects are within the same region of ambiguity at time t, they cannot be

reliably distinguished at time t+ 1. To be explicit, let us suppose that an object

is at some position f̂t,φ in a one-dimensional normalised feature space. Under our

assumption that ∆f̂t,φ is a normalised Gaussian distribution, the object will move

to a new position in the next frame within the range f̂t,φ − 2 < f̂t+1,φ < f̂t,φ + 2

(one region of ambiguity) with probability 95%. If there is a single object within
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this range, the associated link is easy to assign. If there are multiple objects within

this range at t+ 1 though, it will be difficult to distinguish the target object based

upon this single feature alone. The object closest to the target object’s starting

position is most likely to be the target, but there is still a high probability that

one of the other objects within this window is the true target.

As increasing numbers of features are added, the feature space is partitioned

into more and more regions of ambiguity. To illustrate this effect, figure 3.6 shows

the normalised x-y feature space f̂ derived from the feature space shown in figure

3.4. The initially square domain has been stretched into a rectangle by the lower

variability of movement in the x-direction than in the y-direction, corresponding to

a greater value of rt,φ for that feature. As a result, f̂ is split into 10 regions along

the x-axis, while it is split into 4 along the y-axis. The total number of regions

of ambiguity is therefore 40. This multiplicative property captures the effect of

adding additional feature information - as more and more features are added, it

becomes increasingly easy to unambiguously assign links across frames.

The density of the entire dataset, dt, now captures the three factors contributing

to link ambiguity into a single statistic by measuring the average number of objects

per unit volume of the normalised feature space:

dt = nt

φ∏ 1
rt,φ

. (3.9)

where nt is the number of objects detected at time t.

A more user-friendly statistic, the trackability, is calculated as kt = − log10(dt).

This statistic is useful for evaluating the ease of tracking for the entire dataset,

considering the reliability of the information available from all features. Use of kt

implicitly assumes that objects are uniformly distributed through feature space.

This is unlikely to be true, especially in biological systems where cell division will

lead to localised high-density patches. But it can still be a useful heuristic for

deciding which timepoints to include in the full analysis. For example, hard-to-track
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frames (caused by, for example, temporary loss of focus in the original timecourse)

appear as dips in the plot of kt against time.

Of course, this concept of ‘regions of ambiguity’ is somewhat artificial. In reality,

the ambiguity of assignment decreases smoothly as the separation of two objects

in feature space increases. We can see in figure 3.6b several examples of objects

sufficiently close to one another for links to be ambiguous, but which are assigned

to separate regions of ambiguity. Instead, the critical measure is the number of

unrelated objects that appear within the threshold defined by βt - these are the

objects which might be falsely assigned to.

This number can be estimated from dt: we begin by noting that βt is the

radius of a Φ-sphere in frame t+ 1 centred on the position of an object in frame t.

This Φ-sphere isolates a volume from the total volume of the system, and if this

volume randomly contains an unrelated object, link assignment becomes ambiguous.

Assuming objects are uniformly distributed throughout feature space, the Φ-sphere

is small relative to the entire feature space and dt is low enough that two unrelated

objects are unlikely to be within the boundary of the Φ-sphere, the probability p

of a random object appearing within the Φ-sphere is approximately the density

of the system multiplied by the volume of the Φ-sphere:

p ≈ dtβ
Φ
t π

Φ
2

Γ(1 + Φ
2 )
, (3.10)

where Γ() indicates the gamma function. To assign βt, the user defines a target

ambiguous assignment probability p. This is then transformed to βt through

equation 3.10 for each timepoint. Note that βt is calculated according to the metric

of the normalised feature space defined in equation 3.8, meaning it is not reliant

upon the ad-hoc definition of ‘regions of ambiguity’ previously discussed.

Defining βt in this way allows us to automatically change the stringency of

the tracking algorithm according to the properties of the dataset. When a system

is at low density or the degree of movement is small, ambiguous links will occur

fairly rarely and link assignment need not be very stringent. At the other extreme,
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with high levels of system noise or high system density, ambiguous links will be

common. Links should therefore only be assigned when the evidence for object

identity between frames is extremely strong, i.e. βt should be made extremely

stringent to ensure that incorrect links are not accepted.

3.3.6 High-fidelity linking and gap closure

To perform high-fidelity tracking, we now determine link scores Q̂i,j in a similar

fashion as during the creation of the training dataset (equation 3.4). However,

the normalised feature space is instead used:

Q̂i,j = ‖f̂t+1,j − f̂t,i‖. (3.11)

In assigning links from the matrix Q̂i,j, many tracking algorithms optimise the set

of links given the scores of all putative links using matching methods such as the

Hungarian algorithm [208] or the Hopcraft-Karp algorithm [238]. However, the extra

information provided by additional features is usually sufficient to determine a single,

unambiguous link between object i and the set of objects at the next timepoint. As

these more advanced matching algorithms are computationally expensive, FAST

employs a simple greedy algorithm to assign links: given a matrix of putative link

scores, the lowest score is taken and the corresponding link marked as correct. The

sets of scores corresponding to the i and the target object are then eliminated, and

the next lowest scoring link marked as correct. This algorithm loops until scores

raise above βt; scores above this threshold are considered to correspond to false

links, and linking for these objects is suppressed.

This initial linking run will miss objects that mis-segment in frame t + 1 but

segment properly in frame t+ 2 (or higher). To close these gaps, once all objects

associated with links made between frames t to t + 1 have been removed, Q̂i,j is

recalculated for objects i in frame t and objects j in frame t + 2. Because the

normalised displacement space is an isotropic multivariate Gaussian distribution, we

can assume that the movement of an object through it is diffusive. Its displacement
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from its starting position should therefore be proportional to
√
τ (where τ is

the lag between the starting time and the currently considered timepoint). To

account for this, the threshold βt to is raised to
√

2βt for this second linking

step. This assignment is repeated between frames t and t + τ for all values of

τ up to a user-defined maximal gap closure parameter. At each value of τ , the

value of βt is rescaled to
√
τβt.

Multi-frame tracks are then extracted from the feature datasets based on

the previously calculated frame-frame linkages. Tracks below a certain, user-

defined length are removed. Typically, these short tracks correspond to temporary

mis-segmentations, image artefacts or debris, and are not useful during further

analysis stages.

3.3.7 Division tracking

The tracking algorithm described in the previous sections can easily be adapted

to permit detection of cellular divisions. Divisions are events that are associated

with large but predictable jumps in feature space from mother to daughter cells.

For example, in the case of the division of P. aeruginosa, division typically causes

area and length to halve, while the position of daughter cells can be inferred from

mother cell length and orientation.

To initialise the division tracking algorithm following the feature tracking

algorithm, separate versions of f are constructed from the feature vectors associated

with the beginning and ends of those tracks constructed in section 3.3.6. These

vectors represent the states of daughter cells at birth and mother cells at division,

respectively. f̄ and f̂ are now generated in a similar fashion as before, with two

crucial differences: firstly, Σ and µ are calculated from the set of feature vectors

compiled across all timepoints. This compensates for the comparatively low number

of divisions present in the dataset, and prevents statistical noise from dominating

f̂ . Secondly, a model is applied that predicts the feature vector of two daughter

cells based on the feature vector of each mother cell. For example, the length of
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each daughter cell is predicted as half that of the mother, but the orientation of

the daughters remains the same as for the mother. The training dataset f̄ is then

generated based on links made between this predicted feature dataset (based on

the maternal cell’s f) and the actual feature dataset (based on the daughter cell’s

f). Feature normalisation and discrimination threshold selection is then applied

by treating the predicted daughter feature vectors as ft and the actual daughter

feature vectors as ft+1. Links are assigned as described in section 3.3.6.

3.3.8 Post-processing

Following extraction of the time-dependent features, signal processing methods

can be applied to the resulting timecourses. FAST supports definition of different

populations (groups of quantitatively distinct tracks, e.g. tracks corresponding to

different bacterial species) and events (instantaneous moments in a track associated

with a user-defined signal, e.g. a reversal of movement direction). By appropriately

defining populations and events, users can apply a range of powerful analytical and

visualisation tools. Examples of usage of these tools can be found in section 3.5.3.

3.4 The FAST GUI

In order to make the capabilities of the above set of algorithms more user-friendly,

they have been implemented as part of a Matlab GUI. Several objectives have

been met in the implementation of this software:

• Modular design: In order to maximize the flexibility of the FAST framework,

each element has been designed to accept externally generated inputs (figure

3.7). For example, binary images generated by alternative segmentation

algorithms can be used as inputs to the feature-extraction module, allowing

the tracking module to still be applied to datasets that cannot be readily

segmented with FAST. Similarly, features that are not extracted by the feature

extraction module can be measured by external scripts and imported for use

in the tracking module.
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Figure 3.7: Global architecture of the FAST pipeline. Possible inputs are indicated at
the relevant modules.

• Simple work flows: Many cell tracking GUIs (e.g. OUFTI/Microbe tracker

[239]) incorporate large numbers of tools into a single GUI screen. While

these tools can extremely powerful when analysing certain datasets, their

interfaces can be daunting to the non-expert. In FAST, each task is separated

into a separate GUI window, minimising the amount of information that must

be digested by the user at any one time. The GUI is also designed to steer

the user through each sequential stage of the parameter selection processes,

limiting access to tools that are not of immediate use.

For large datasets, a high-throughput script-based version of the pipeline has

also been prepared. To use this, the user simply performs tracking once using

the GUI-based version of the pipeline. Structures containing the analysis

settings are automatically generated and saved, which can be read and applied

by the high-throughput pipeline.

• Rapid user-directed feedback: With some tracking algorithms, the entire

dataset must be analysed before track quality can be ascertained. This can

introduce an impractical delay between rounds of user-guided parameter
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optimisation. At points where user input of parameters is required, FAST

therefore provides immediate feedback based on analysis of a sub-sample of

the total dataset. Once the user is satisfied with their choice of parameters,

the entire dataset is analysed.

3.5 Case studies

To demonstrate and test FAST, several case studies showcasing its features and

capabilities will be discussed:

3.5.1 Correlation of single-cell motility and intracellular
cAMP levels

As discussed in the introduction (section 1.2.6), twitching motility in P. aeruginosa

is highly dependent upon the intracellular cAMP levels. Recently, use of a strain

expressing YFP under the control of a cAMP-sensitive promoter in a vfr-dependent

manner (figure 1.3a) demonstrated that cAMP levels increase upon mechanical

stimulation [106]. However, it was not established how this change in cAMP levels

altered the motility of individual cells.

To address this question, cells of this cAMP reporter strain were imaged in a

low-density assay at a frame rate of 2 frames per minute in the brightfield and

YFP channels. Using this low framerate helped to minimise photobleaching and

phototoxicity, but the resulting dataset was difficult to track. A major problem

was the heterogeneity of movement; although many cells remained fairly motionless

throughout the experiment, others displayed a level of motility that was difficult

to follow, even by eye. The dataset was also highly dynamic, with the density of

the system gradually increasing through cell division. Increases in cell motility

and YFP expression also occurred (figure 3.8a).

Following the segmentation and feature measurement stages, FAST was used

to track cell movements. The training dataset was created using only the object

centroid coordinates as features. The resulting histogram of training link scores
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Figure 3.8: Use of FAST to study the link between intracellular cAMP levels and
twitching motility. a) Brightfield (left) and YFP-channel (right) images of same field
of view at early (t = 0 min, top) and late (t = 240 min, bottom) timepoints. YFP
expression was driven by intracellular cAMP. b) Histogram of distances in regularised
feature space for low-fidelity links, compiled across all frames and objects. This distance
is equivalent to qi from equation 3.4. Red line indicates user-specified value of P . c)
Dynamic measurement of reliabilities rt of cell x-coordinate (x), y-coordinate (y), width
(Lm), length (LM ), orientation (θ) and YFP fluorescence (m2). d) Dynamic measurement
of trackability, kt. Red line indicates user-specified limit of high-trackability timepoints.
e) Histogram of track lengths. The y-axis indicates the percentage of all objects assigned
to the specified length of track, rather than the number of tracks. The user-specified
minimum track length is indicated by the red line. f) Scatter plot of track-averaged cell
speed and YFP fluorescence levels. Correlation is significant (R = 0.488, p < 10−12,
Pearson correlation coefficient test).
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(qi from equation 3.4) displayed a distinctive secondary hump, suggestive of a

population of false links (figure 3.8b). The valley between this hump and the

main zero-centred peak was a natural location to define P , the user-selected

training link inclusion proportion.

Plots of both feature reliability rt,φ (figure 3.8c) demonstrated that the machine

learning stage was able to accurately capture the dynamic variability of the dataset.

Although the reliability of most features decreased monotonically with time, the

stability of reliability differed between features. For example, the reliability of cell

position (x,y) decreased substantially over the course of the experiment, as the

increase in single-cell speed over time deacreased the positional stability of the

average cell. In contrast, the fluorescence of the YFP channel m2 increased in

reliability during the earliest portions of the experiment due to the early increase

in the dynamic range of YFP expression. By capturing these dynamic changes in

feature reliability, FAST was able to accurately compensate for changes in their

usefulness when assigning links between frames.

Trackability kt also displayed a monotonic decrease over the course of the

experiment, due to a combination of the decrease in reliability of the individual

features and the increase in system density (figure 3.8d). Because of this, timepoints

beyond 140 minutes were essentially untrackable. These were removed from the

dataset within FAST.

Using an ambiguous assignment probability of p = 0.02, tracks of a wide variety

of lengths were generated (figure 3.8e). Tracks fewer than 10 timeunits long were

discarded as noise. Finally, FAST’s plotting module was used to generate the

bivariate distribution of track-averaged cell speed and YFP fluorescence (figure

3.8f), revealing a statistically significant correlation (R = 0.488, p < 10−12, Pearson

correlation coefficient test). These results suggest that intracellular cAMP levels

are indeed important for determining the extent of single-cell twitching motility,

although further experiments need to be performed to establish that this correlation

is causal and not simply due to an unlinked increase in both YFP expression and
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motility over time. It is know that P. aeruginosa undergos surface adaptation over

around 3 h following exposure to a new surface[112], and it is plausible that this

adaptation process could be driving a common trend in both measured variables. A

more robust test of the causal relationship between cAMP levels and motility would

be tracking of cells over a much shorter window, such that average YFP expression

levels and speed remained approximately constant over the course of the experiment.

It should then be possible to again use FAST to investigate the link between these

two variables, while largely discounting adaptation time as a contributory factor.

3.5.2 Tracking of high-density, high-motility collective mo-
tion

To showcase the advantages of FAST’s multi-feature tracking approach, a second

dataset was prepared by allowing the low-density colony of the cAMP reporter

strain used in the previous section to reach confluence overnight. A region of the

resulting monolayer was then imaged at a framerate of 10 frames per minute.

The resulting dataset was exceptionally challenging, largely because of the

reasons outlined in figure 3.4: rapid cell movement and high cell density made

centroid and overlap-based information ambiguous. The system’s high density also

made segmentation difficult; those parameters that best captured cell profiles often

led to variable segmentation of cells undergoing septation. In addition, numerous

cells moved into and out of the field of view from one frame to the next (figure 3.9a).

Performance of different tracking algorithms was objectively assessed by com-

paring predicted links to a manually compiled dataset consisting of 380 links.

Each predicted link for each object in frame t was then classified according to

the scheme laid out in figure 3.4c:

• True positives were predicted links that matched the manually assigned

link.

• False positives were predicted links that were either a) not assigned in the

manual dataset, or b) assigned between the wrong objects.
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Figure 3.9: Accurate tracking of a challenging dataset with FAST. a) Subsection of
high-density tracked dataset. Coloured segmentations indicated detected objects in frame
6 (red) and frame 7 (cyan) of dataset. Regions of overlap between the two frames are
shown in white. Black arrows indicate manually assigned movements of cells between
frames. Orange arrowheads indicate objects segmented differently between frames. b)
Precision-recall curves of the classical (nearest-neighbour) tracking algorithm (blue), FAST
using only object centroid coordinates x and y as features (orange) and FAST using
object centroid and length as features (yellow). c) Displacement space joint distributions
of object centroid (∆x, ∆y) and length (∆LM ) measured manually between two frames.
All distributions are given in µm. d) Normalised displacement space for frames used
in (c), automatically generated with FAST using cell centroid and length as features.
The discrimination threshold βt (blue dotted circle) that produced the peak F-score
was used to assign links. Comparison of these with manual links allowed classification
of automatically assigned links as true positives (black), true negatives (purple), false
positives (blue) and false negatives (red). e) Failure cases from (d). Yellow and magenta
masks indicate objects associated with links classified as false, while links classified as
correct and assigned to objects between frames t and t+ 1 are indicated with green to
blue masks. The false positive (top) is caused by mis-assignment of a poorly segmented
cell (red arrow). The false negative (bottom) is caused by a large increase in apparent
cell length between frames.
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• True negatives were unassigned predicted links that were not assigned in

the manual dataset.

• False negatives were unassigned predicted links that were assigned in the

manual dataset.

Using these definitions, recall[242] Re was then defined as:

Re = #True positives
#True positives + #False negatives , (3.12)

and precision Pr was defined as:

Pr = #True positives
#True positives + #False positives . (3.13)

Intuitively, recall can be understood as the completeness of link assignment,

while precision can be understood as the accuracy of assignment. As the true-false

discrimination threshold βt is made less stringent, an increasing number of false

negatives are converted to true positives. This leads to an increase in Re. At

the same time however, a increasing number of true negatives will be converted

to false positives, leading to a drop in Pr. To compare the trade-off between

these two elements of algorithmic performance, we can use the F-score, F . This

uses a balanced combination of precision and recall to define a single metric of

algorithm performance [242], and is defined as:

F = 2 Re Pr

Re+ Pr
. (3.14)

F is defined to vary between 0 < F < 1, with a value of F = 1 indicating perfect

tracking. As the true-false discrimination threshold βt is varied, the F-score changes

as the values of Pr and Re vary. At a certain value of βt, the F-score reaches a peak

value. This peak F-score measures the quality of the best tracking possible with

the algorithm in question. The corresponding value of βt represents the optimised

value of the discrimination threshold.
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To objectively compare different tracking algorithms, this optimisation procedure

was applied to the manually tracked dataset using three separate algorithms: a

classical nearest-neighbour approach (outlined in figure 3.4c), FAST using only

the centroid coordinates as features, and FAST using centroid coordinates and cell

length as features (figure 3.9b). For the FAST-based algorithms, P = 0.5.

As anticipated from the extreme motility and density of the system, the classical

approach struggled to accurately assign links. It faced two problems. Firstly, it

was unable to find a value of βt that effectively discriminated true from false links.

Secondly, many of the links that were assigned were made incorrectly, due to the

ambiguity of positional information in this dataset. As a result of these difficulties,

the peak F-score for this algorithm was only F = 0.76.

Allowing the model training portion of FAST to act on the centroid-based

features improved tracking quality substantially, with a peak F-score of F = 0.88.

This score was lowered by the presence of links that could not be accurately assigned

on the basis of centroid information alone. However, with the inclusion of cell length

as a feature, these ambiguities could be more effectively resolved. This extra

information improved peak F-score to F = 0.96.

Comparison of the raw displacement space ∆f for manually assigned links

between two frames (figure 3.9c) to the corresponding normalised displacement

space ∆f̂ that generated the peak F-score (figure 3.9d) reveals the origins of this

tracking enhancement. Firstly, the substantial element of drift associated with the

dataset is effectively removed by the feature normalisation process - all distributions

of ∆f̂ are centred at the origin. Secondly, integration of length information allows

ambiguous cases to be effectively resolved. In the plot of ∆x̂ against ∆ŷ for example,

there are several true negatives that cannot be accurately assigned based purely on

their positional information (as they reside within the range defined by βt). But

the substantial change in L̂m associated with these links is sufficient to bring them

over the discrimination threshold, allowing their accurate removal.
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There are two failure cases associated with this pair of frames, shown in figure

3.9e. Both the false positive and the false negative are associated with segmentation

errors, suggesting that further improvements to FAST should be concentrated on

the segmentation rather than tracking portion of the algorithm.

3.5.3 Quantification of Type VI Secretion System (T6SS)
behaviours

FAST can be used for quantification of cellular behaviours other than motility. As

an illustration, the activity of the Type 6 Secretion System (T6SS) was analysed

using the FAST framework. The T6SS is a highly dynamic organelle composed

of a molecular ‘spear’ tipped with a toxin known as an effector [243]. T6SS firing

by a bacterium can inject this effector into a neighbouring cell, killing it. Firing

events can be monitored by visualising the localisation of two proteins: VipA, the

intracellular protein that forms the contractile sheath around the spear [244] and

ClpV, the protein responsible for disassembling the sheath following firing [244,

245]. Here, the dynamics of ClpV will be analysed.

Because of its short range, the T6SS is effective only in high-density collectives

and is typically studied in such contexts. FAST was applied to a timeseries

consisting of a 2D mixture of V. cholerae and P. aeruginosa expressing ClpV-

mCherry and ClpV1-GFP, respectively. This dataset was taken from a previously

published study [245]. The two populations could easily be distinguished by their

formation of two easily separated clusters in the bivariate distribution of mCherry

and GFP expression (figure 3.10a).

FAST’s plotting module was next used to generate timecourses of representative

cells in the two channels, allowing individual firing events to be monitored (figure

3.10b,c, top). Comparison of these timecourses with the standard deviation of pixel

intensities in each channel (s2 and s3 as defined in figure 3.3)2 demonstrated that

T6SS firing was associated with a step-like increase in the standard deviation of
2s1, the standard deviation of pixel intensities in the brightfield or phase contrast channel, is

not useful in this case.
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Figure 3.10: Use of FAST to automatically analyse T6SS firing events. a) Bivariate
distribution of GFP-ClpV1 (P. aeruginosa) versus mCherry-ClpV (V. cholerae) fluores-
cence levels. Threshold used to separate V. cholerae cells (red) from P. aeruginosa cells
(cyan) is indicated by the dotted line. b) (top) Temporal profile of GFP fluorescence in
a representative V. cholerae cell. (middle) Temporal profile of mCherry fluorescence in
same cell. (bottom) Plot of standard deviation of pixel intensities s for the GFP (cyan)
and mCherry (red) channels for cell shown in top two sections. Black dotted line indicates
threshold used to distinguish firing events. c) Temporal profile of GFP and mCherry
standard deviation of fluoresence for a representative P. aeruginosa cell. Format as in (b).
d) Firing event-centred averages for mean m (solid lines, right-hand y-axis) and standard
deviation s (dotted lines, left-hand y-axis) of fluorescence within P. aeruginosa (cyan)
and V. cholerae (red) cell profiles.

91



3.5. Case studies

the spatial distribution of ClpV, caused by the formation of spot-like puncta of

ClpV within the cell. This characteristic allowed firing events to be automatically

detected and marked by applying a simple threshold to the timecourse of s2 or s3.

Based on this analysis, V. cholerae was found to fire around 10× more frequently

than P. aeruginosa (0.29 firing events cell−1 min−1 compared to 0.030 firing events

cell−1 min−1), consistent with a model of constitutive V. cholerae firing compared

to tightly regulated P. aeruginosa firing [245].

The plotting module was now again used to generate event-centred averages

of the average pixel intensity in each channel (m) and the standard deviation of

pixel intensity in each channel (s), centred around firing events (figure 3.10d). This

demonstrated that firing was associated with a minimal increase in the average level

of ClpV expression in both species, suggesting that firing drives a relocalisation of

ClpV rather than its de novo production. Relocalisation rather than production

would be expected to be the dominant regulatory mechanism at play based on

the short timescales over which firing occurs.

This analysis also allows a comparison of the relocalisation dynamics of ClpV to

be made between the two species. The spatially calculated standard deviation s

for both species shows a rapid increase upon detection of a firing event. As this

increase is how we have defined firing events, this signal is not surprising. However,

the rate at which ClpV localisation returns to baseline in V. cholerae is much faster

than in P. aeruginosa. This suggests that T6SS sheath disassembly in V. cholerae

is more rapid than in P. aeruginosa. Presumably, this faster protein turnover is

an important element of V. cholerae’s faster firing rate.

In summary, FAST can be applied to a wide variety of challenging biological

datasets, allowing many different types of question to be addressed in a quantitative

and objective fashion. In the following chapters, it will be principally used to

study cellular motility.
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Reading is one form of escape. Running for your life
is another.

— Lemony Snicket

4
The jumping crowd: cell movement in

monolayers shows both individual
twitching and collective turbulence

The study of 2D active matter has previously been applied to a wide variety

of experimental systems: epithelial monolayers (e.g. [246, 247]), microtubule

suspensions (e.g. [156, 179]), collectives of biological and non-biological swimmers

(e.g. [165, 248]), growing bacterial colonies (e.g. [166, 176]) and collections of

shaken rods (e.g. [162]). As discussed in the introduction, despite the incredible

diversity of mechanisms driving movement in each of these systems, the collective

behaviours that emerge in each are remarkably similar. Ultimately, all that is

needed to drive these dynamics are a) a tendency for agents to locally align, and b)

a self-generated force to drive movement. Provided these two conditions are satisfied,

the details of the physical mechanisms behind them have generally been regarded

as inconsequential for understanding the coarse-grained dynamics of the system.

Cells within the P. aeruginosa monolayer possess these properties, with twitching

motility providing a force along the long axis of the cell and steric interactions

between rod-shaped cells providing local alignment. This suggests that it should

be possible to treat the monolayer as a new example of an active matter system.
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It would therefore be useful to be able to directly use ideas from this field to

understand various properties of the monolayer. However, before we can do this,

we must first verify that the monolayer presents dynamics that are comparable

to those of prior experimental and theoretical systems. Several questions must

be addressed: What specific class(es) of active matter do monolayers of surface-

associated P. aeruginosa resemble? Over what temporal and/or length scales can

it be modelled using the simplifying framework of active matter? And how do

individual behaviours influence the resulting collective dynamics?

In this chapter, I address these questions by analysing the dynamics of WT P.

aeruginosa monolayers at different timescales using a combination of cell tracking

(using FAST) and Particle Image Velocimetry (PIV). I find that the monolayer

is a multiscale system, with monolayer dynamics being dominated by noisy, high-

velocity movements of cells at short timescales, but appearing as a turbulent

active nematic at long timescales.

4.1 PIV reveals distinct monolayer properties at
different timescales

4.1.1 The monolayer displays active turbulence at long timescales

Using the subsurface sandwich assay (section 2.3), a 147µm × 147µm region of

a WT monolayer was imaged in the brightfield channel at a sampling rate of 1

frame per second. The resulting imaging data was preprocessed using Fiji [249] by

applying a combination of background subtraction and contrast normalisation. The

same pre-processing steps were applied to all brightfield data in the remainder of

this thesis, and will not be explicitly mentioned in subsequent sections.

PIV, an image analysis technique that measures the instantaneous velocity of

fluids using sequential images in timelapse datasets, has been widely used to study

the large-scale dynamics of active systems [163, 246, 250]. It was applied to the

preprocessed data using PIVlab, an open-source plugin for Matlab [251]. Velocity

vectors were calculated on a 128 × 128 grid over the imaging window, with the grid
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spacing (1.148 µm) chosen to approximate the width of a single cell. This allowed

dynamics at the scale of a single cell to be captured. Vectors with spuriously large

magnitudes (>36.6 µm min−1) were rejected and replaced with values interpolated

from surrounding vectors. This analysis produced a set of velocity vectors v(t, r)

over the lattice of positions r at time t.

Pixel-locking is an image processing artefact through which velocity vectors

become biased towards the underlying pixel grid, and is a common problem in

PIV-based approaches [248, 252]. To test for its presence in the PIV-derived

flowfields of the monolayer, a 2D histogram of v(t, r) was plotted (not shown). This

failed to reveal any grid-based anisotropy, indicating that the effect of pixel-locking

in this system was negligible [248].

The spatially averaged displacement vector at each timepoint v(t) was subtracted

from v(t, r) to produce the perturbation field v′(t, r). The average magnitude of v(t)

was small (≈10% of the average element of v(t, r)), but its removal helps to prevent

spurious correlations in v(t, r) by removing asymmetries in the distribution of

velocity vectors [164].

Over the 10 minute imaging window, the average velocity of the monolayer

steadily decreased from 6.28 µm min−1 to 3.78 µm min−1 (figure 4.1a), probably due

to increases in monolayer density associated with cell division [246]. Nevertheless,

movements of the monolayer at the beginning and end of the dataset remained well

correlated, suggesting that this slowing of monolayer movement did not substantially

change the overall structure of the flows within it.

Throughout this chapter, it will prove useful to consider the dynamics of the

monolayer at different timescales. One means of achieving this is to temporally

average v′(t, r), increasing the timescale over which the dynamics are measured.

Transient flows are ‘smoothed-out’ by their integration with stationary timepoints

and flows in the opposite direction at the same location, while steady flows remain

quantitatively similar before and after averaging. Note that this temporally averaged

perturbation field v′(r) is distinct from the spatially averaged flow vector v′(t). This
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Figure 4.1: PIV reveals turbulent dynamics in WT P. aeruginosa monolayers. a)
Timecourse of spatially-averaged speed of the monolayer. Shaded area indicates mean ±
s.d. calculated over all PIV-derived velocity vectors at each timepoint in ∆t = 1 s dataset.
b) Velocity correlation function Cvv for temporally averaged PIV flowfield (∆t = 600
s) and non-averaged flowfield (∆t = 1 s). (inset) Portion of main plot with magnified
y-axis. lv indicates the vortical lengthscale, defined as the most negative value of Cvv
for the ∆t = 600 s flowfield. c) Vorticity field ω for the ∆t = 600 s flowfield. Colour
indicates local vorticity, calculated as ω = |∇ × v′(t, r)|. Streamlines are plotted for the
top left portion of the flowfield. d) Vorticity field for representative flowfield from the
∆t = 1 s dataset. Format as in (c). (inset) Magnified portion of the flowfield used in main
plot. Individual PIV vectors are plotted as green arrows on top of the raw image of the
monolayer.

96



4. The jumping crowd: cell movement in monolayers shows both individual
twitching and collective turbulence

was set to zero by the subtraction of v(t) from v(t, r) to generate the perturbation

field, as outlined above.

In this section, the two extreme versions of the flowfield will be considered. The

first is averaged over the entire 600 s of the experiment, and will be referred to

as the ∆t = 600 s flowfield. The second is the original non-averaged flowfield, the

timescale for which remains at the 1 s imaging frequency. This will be referred to as

the ∆t = 1 s flowfield. Note that the sizes of these two datasets differ: the temporal

averaging operation acts to collapse the ∆t = 600 s flowfield into a single 128 ×

128 set of velocity vectors, while the ∆t = 1 s flowfield consists of 600 separate

128 × 128 sets of velocity vectors (one for each time point).

The velocity correlation function Cvv is widely used to determine the degree

of structure in the collective motion of active systems [156, 163, 253]. It can

be calculated by averaging the scalar product of all pairs of velocity vectors

separated by a given distance, R:

Cvv(R) = 〈v
′(t, r) · v′(t, r + R)〉
〈v′(t, r) · v′(t, r + l)〉 , (4.1)

where the brackets 〈〉 denote the ensemble average over all t and r, R is the set

of all displacement vectors of length |R| = R from the lattice point r, and |l| = l

defines a normalisation distance at which Cvv(R) is set to 1. Following the approach

of [163], l is set to one cell length lc (3.2 µm, estimated from manual measurement

of cell lengths) and R is rescaled by lc.

Cvv(R) was calculated for both the ∆t = 600 s and ∆t = 1 s versions of the

PIV flowfield data (figure 4.1b). For the ∆t = 600 s flowfield Cvv(R) drops below

0. Negative values of Cvv(R) indicate that, on average, a region at a separation

R from a reference point r experiences flow in the opposite direction to that at r.

Such spatial structuring is a characteristic sign of the vortex networks associated

with active turbulence [163, 253]. The position at which Cvv(R) reaches a minimum

(≈ 7lc) defines the characteristic vortical lengthscale for the system, lv, a measure

of the average size of the vortices that form within the active system.
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4.1.2 Short timescale monolayer dynamics differ from long
timescale dynamics

However, for the ∆t = 1 s dataset, Cvv failed to drop below zero. The reason

for this can readily be seen in the vorticity of a single flowfield from the ∆t = 1

s dataset (figure 4.1d) - although there are regions of high vorticity within the

monolayer, these are spread out and lack substantial spatial structure. The pattern

of vorticity at this timescale suggests that the monolayer dynamics consists of large,

rapid movements of small regions of the monolayer, rather than the smooth flows

of active turbulence generated by swimming agents [163, 165, 250, 254].

To further investigate these movement transients, the marginal distributions of

the normalised PIV velocity components [v′i−〈v′i〉]/[〈v′2i 〉−〈v′i〉2]1/2i=x,y were calculated

(figure 4.2). In classical 2D turbulence [255], as well as the active turbulence induced

by swimming agents [163, 165], these marginal velocity distributions conform (at

least approximately) to a normalised Gaussian distribution. However, the velocity

distributions from our system are clearly non-Gaussian, displaying heavy tails.

Similar non-Gaussian velocity statistics are observed in granular gases, systems

of vibrated particles in which energy is dissipated through inelastic particle collisions

[256, 257]. To quantify the extent of the heavy tails in these systems, it is typical to

fit velocity distributions to the generalised normal distribution. In its normalised

form, the PDF of a generalised normal distribution is given as:

f(x; β) = β

2αΓ(1/β)e
−(|x|/α)β , α =

√√√√Γ(1/β)
Γ(3/β) . (4.2)

For β = 1, this distribution is equal to the Laplace (a.k.a. double exponential)

distribution, while for β = 2 it becomes the Gaussian distribution. This function

was fit to the data shown in figure 4.2 using a maximum-likelihood estimator method

[258], with β as the free parameter. For the ∆t = 1 s dataset, the best-fit value of

β = 0.99. In contrast, for the ∆t = 600 s dataset, β = 1.36, suggesting that as the

timescale is increased the velocity distribution increasingly approximates a Gaussian.

98



4. The jumping crowd: cell movement in monolayers shows both individual
twitching and collective turbulence

Figure 4.2: Collective movements of the WT monolayer have different statistical
properties at short and long timescales. Plotted are the normalised marginal velocity
distributions for both velocity components of the ∆t = 600 s (magenta) and ∆t = 1 s
(green) PIV flowfields. The solid black line indicates the normalised Laplace distribution
(β = 1), while the dashed black line indicates the normalised Gaussian distribution (β = 2).
(Inset) un-normalised marginal velocity distribution for both datasets.

This correlates with the previous observation that monolayer dynamics more closely

resemble active turbulence in the ∆t = 600 s dataset than in the ∆t = 1 s dataset.

4.2 PTV reveals the origin of anomalous short
timescale dynamics

PIV is the most widespread tool for quantifying movement in 2D active systems.

It was used in the previous section to permit direct comparison between the P.

aeruginosa monolayer and previous studies of collectives of swimming cells [200, 248,

259], demonstrating a connection between the dynamics of the two systems at long

timescales. However, it is not the only method for quantifying collective movement.

Tracking of single cell behaviours (equivalent to particle tracking velocimetry (PTV)

in classical fluid dynamics) permits a higher-resolution, off-lattice view of collective

behaviours [152], but applying it to swimming-based systems is difficult due to the

inability to confine cells to a single layer. Instead, cells in these earlier experiments

swim within a thin layer of liquid that is several cell widths thick, allowing them

to move on top of one another. This factor renders direct tracking of individual
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cells in swimming collectives almost impossible. Fortunately, cells in the twitching

monolayer are strongly confined to a two-dimensional layer of single-cell thickness,

allowing PTV to be successfully applied.

We saw in the previous chapter that FAST can be used to measure the behaviour

of individual cells within the monolayer. Here, it is applied to unravel the origin

of its anomalous velocity statistics (figure 4.2).

4.2.1 PTV generates similar monolayer statistics to PIV

PTV and PIV provide complementary views of fluids. A velocity field may be

represented using two different formalisms [260]: in the Eulerian approach, the

flowfield is represented as the instantaneous velocity of the fluid at each spatial

location r and each timepoint t. This representation can be expressed by the

function v(r, t), and is provided by PIV. In contrast, the Lagrangian approach

represents the flowfield as the positions of individual fluid parcels relative to their

initial starting points r0. This representation can be expressed by the function

X(r0, t), and is provided by PTV. The Eulerian and Lagrangian representations of

a given flowfield contain equivalent information, and as such it should be possible

to perfectly reconstruct one representation from the other through the relation:

u(X(x0, t), t) = ∂X
∂t

(x0, t). (4.3)

Here, the Eulerian representation of the monolayer generated by PIVlab will be

compared to the Lagrangian representation generated by FAST. While PIVlab is

extremely widely used and well-tested, it cannot directly measure the behaviour of

individual cells within the monolayer, instead estimating the flow of patches from

each image. This is a significant limitation, as neighbouring cells can move very

differently from each other. However, the overall movement of the monolayer as

measured with PIV can be used as a standard for comparison with FAST. Assuming

tracks generated with FAST replicate the anomalous short timescale behaviours
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of the monolayer as measured by PIV, it should be possible to use these tracks to

assess how individual cells contribute to the anomalous short timescale behaviours.

PTV was performed by using FAST to track the motion of individual cells within

the monolayer used in section 4.1. Setting the minimum track length to 10, a total

of 161,769 tracks were generated. Two separate types of comparisons between the

PIV and PTV datasets were made. In the first, the ∆t = 600 s PIV dataset was

compared to the PTV dataset by binning trajectories and averaging them. The

entire field of view was split into a 128 × 128 array of bins, with each bin centred

on a corresponding PIV sampling point. Instantaneous track velocity vectors for

each cell associated with each bin at each timepoint were pooled and averaged,

generating a set of 128 × 128 average velocity vectors corresponding to those of

the ∆t = 600 s PIV dataset. A direct comparison of the two methods was then

made by decomposing each PIV and PTV vector into its x- and y-components and

measuring their correlation (figure 4.3a). The degree of correspondence between the

two algorithms is good, with a correlation coefficient of 0.88. However, PTV-derived

vectors are, on average, 30% larger in magnitude than those derived from PIV.

This is likely to be because PIV assumes that movement is coherent at the scale of

the sampling grid, r. In reality, movement need not be coherent, as neighbouring

cells can move somewhat independently of each other. PIV will therefore tend to

underestimate the amount of movement at each location.

In the second approach, the ∆t = 1 s PIV dataset was compared to the

instantaneous velocity of cells as calculated from the track data. As ∆t → 0,

Eulerian and Lagrangian representations can be equated through equation 4.3. Of

course, for the two representations to be exactly equal, the PIV field would have to

be sampled at the instantaneous cell positions X(r0, t) rather than at the lattice

positions r. Nevertheless, as r is of a similar coarseness to the spacing between

cells, overall velocity statistics derived from the two representations should be

approximately equal.
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Figure 4.3: Comparison of PIV and PTV methods. a) Bivariate distribution of
velocity components for the ∆t = 600 s PIV flowfield and the temporally averaged
PTV flowfield. Instantaneous velocity vectors from all PTV tracks were assigned to
spatial bins corresponding to the bins of the 128×128 PIV grid. The contents of each bin
was then averaged, giving an estimate of the average motion of the monolayer within that
bin. Correlation coefficient (R) and line of best fit (red) are indicated. b) Normalised
marginal velocity distributions for the ∆t = 1 s PIV dataset (blue) and instantaneous
PTV dataset (red). Format as in figure 4.2.

Instantaneous velocity vectors from all tracks at all timepoints were calculated

and pooled, and the marginal distributions of the normalised PTV velocity com-

ponents calculated as for the set of ∆t = 1 s PIV velocity vectors. The marginal

distributions were similar in both shape and scale to those generated using the PIV

data (figure 4.3b), although the standard deviation of the PTV-derived distribution

was around 30% larger than that of the PIV-derived data. This corresponds to the

difference in vector magnitudes observed in the ∆t = 600 s dataset (figure 4.3a).

Similar to the ∆t = 1 s PIV velocity distribution, the PTV velocity distribution

was highly non-Gaussian with β = 1.12. This result suggested that the origin of the

heavy tails of the velocity distributions should be visible within the single-cell tracks.

4.2.2 High-frequency imaging reveals the origin of short-
timescale monolayer behaviours

To pursue this idea, a new WT monolayer was prepared and imaged at a much

higher framerate than in the previous section (127 frames per second) using phase

contrast microscopy. Again, FAST was applied to the resulting dataset. Because of
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the use of phase contrast instead of brightfield microscopy, the segmentation portion

of the FAST pipeline performed far more robustly. This allowed the generation

of much longer tracks than for the low-resolution monolayer dataset: 27% of all

timepoints measured were assigned to tracks that spanned the entire 1,900 timepoint

long dataset. Because of the extremely high frequency of sampling, the amount of

measurement noise (generated by the discrete nature of the pixels forming the cell

masks) became significant relative to the extent of cell movement. To reduce the

impact of this noise, positional data was smoothed with Matlab’s loess method,

using a span of 5% of the total track length.

The marginal velocities of this dataset revealed an even more non-Gaussian

distribution than for the ∆t = 1 s dataset, with the tails extending beyond even the

limits of the Laplace distribution (figure 4.4a). Reflecting this, β dropped below 1

to 0.93. Focussing on movements associated with these tails revealed that individual

cells were capable of moving substantial distances in a very short amount of time

in transient twitching motions (figure 4.4b,c). The maximum speed associated with

these movements was ≈4 mm min−1, comparable to that of individual flagella-based

swimming in B. subtilis [248] and substantially faster than the speeds of ≈0.5

µm min−1 more typically associated with individual twitching motility [20]. Some

cells also rotated in place, with little movement of their centroid (figure 4.4d).

These movements were also extremely rapid, with the example shown reaching a

peak angular velocity of 39.5 rad s−1. Still other rapid movements were associated

with ‘shoving’ of other cells (figure 4.4e), although these events were relatively

uncommon. The vast majority of twitches however moved cells into free space

unoccupied by other cells (e.g. figure 4.4b-d).

How important are these high-velocity movements in determining the overall

movement of individual cells? To address this question, a similar approach was

taken to [142]: instantaneous cell movements were split into ‘twitches’ (above a

twitching speed threshold vt) and ‘crawls’ (speed below vt). In [142], the velocity

distribution was clearly bimodal, with the trough between the two peaks of the
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Figure 4.4: Anomalous velocity statistics are driven by high-velocity, short-duration
‘twitches’. a) Normalised marginal velocity distribution for ∆t = 0.0079 s dataset. vt is
the twitching velocity threshold, corresponding to an instantaneous single-cell speed of
400 µm min−1. Format is as in figure 4.2. b) Example of high-velocity twitch. Green
ellipse indicates twitching cell. c) Track associated with data shown in (b), progressing
from first timepoint in track (blue) to final timepoint (red). Green profiles indicate cell
outline at indicated times. d) Example of high angular velocity twitch. e) Example of
twitching ‘shove’. f) Probability density of difference between instantaneous direction of
travel φ and orientation of leading pole θlead, denoted by ϕ. Instantaneous movement
vectors were split into separate ‘twitch’ (brown) and ‘crawl’ (green) populations, based
on vt. (inset) Illustration of calculation of ϕ.

distribution providing a natural value of vt. This was not observed in the velocity

distribution for the monolayer (figure 4.4a), possibly because of coupling of twitches

between cells through cell-cell shoving. However, it did display a kink corresponding

to a total (rather than marginal) instantaneous cell speed of ≈400 µm min−1, above

which the tails of the distribution decayed very slowly. As these long tails were

thought to be composed of twitches, this value was used as vt.
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If twitches are an important element of directed cell movement, they would

be expected to be biased towards the overall direction of motion. To assess if

this was the case, the net movement of each cell was first estimated by measuring

the vector between its start and end positions. Because this net motion was

dependent upon the duration of the track, only tracks that spanned the entire

15 s duration of the dataset were used. At each timepoint, the cell pole that

was oriented less than 90° relative to this net movement vector was assigned as

the ‘leading’ pole, with an orientation (in global coordinates) of θlead. The angle

between the instantaneous direction of motion φ and θlead was then calculated as

ϕ = θlead − φ. For instantaneous movements where the cell was moving towards its

eventual destination, −90° < ϕ < 90°, while for instantaneous movements where

the cell was moving away from its destination, ϕ < −90° or 90° < ϕ.

The resulting distribution of ϕ is shown in figure 4.4f for both the ‘twitch’

and ‘crawl’ populations of instantaneous velocity vectors. As expected, crawls

were found to be biased towards the overall direction of motion, with 141,491

crawling movements towards the end point of the track and 121,299 away from it.

This represented a statistically significant bias of ≈ 17% towards the leading pole

(p < 10−100, two-tailed sign test). The distribution also displays a characteristic

bow-tie shape, indicating that movements both towards and away from the leading

pole were restricted to the long axis of the cell. However, twitches were found to be

unbiased towards the overall direction of motion: 318 twitches were directed away

from the overall direction of motion, while 314 were directed towards it. These

numbers were not significantly different (p > 0.05, two-tailed sign test).

4.2.3 Directional bias of crawls dominates single-cell mo-
tion at long timescales

Although there is a clear bias in movement towards the leading pole for at least

some movements, the overall movement process is extremely noisy. Cells only spend

around 54% of their time moving towards their eventual destination. To assess
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the extent of this noisiness, instantaneous cell motions were transformed into a

leading pole-oriented space by rotating about θlead. They were then decomposed

into components parallel to the cell axis v‖ and components perpendicular to the cell

axis v⊥. These were then combined to generate the joint velocity distribution (figure

4.5a). This distribution was very nearly symmetrical about the leading/lagging

pole axis, emphasising the noisiness of cell motion. However, there was a small

bias towards the leading pole of 4.9 µm min−1.

This directional bias may not seem like much in comparison to instantaneous

twitches of > 2000 µm min−1. However, it will eventually dominate the movement

of the cell. To demonstrate this, let us begin by assuming that individual motions

are sampled from the distribution of figure 4.5a independently and identically (i.i.d).

Each movement consists of a displacement di with components (d‖, d⊥) = ∆t(v‖, v⊥),

where ∆t is the timestep size. Movements are biased towards a specific direction,

with the underlying displacement distribution having non-zero mean components

(µ‖, µ⊥). They are also random, with separate variances (σ2
‖, σ

2
⊥) for the two

components. For a trajectory N timepoints long, repeated sampling will generate

a set of displacements {d1,d2...dN}. The net movement of the cell is then given

simply as ∑N
i=1 di, with the average displacement measured at the sampling rate

∆t being given as d̄ = 1
N

∑N
i=1 di.

If we further assume that d⊥ and d‖ are uncorrelated, the central limit theorem

states that for sufficiently large N both components of d̄ will approach a normal

distribution with mean µ and variance σ2

N
, i.e. d̄‖ ∼ N(µ‖,

σ2
‖
N

) and d̄⊥ ∼ N(µ⊥, σ
2
⊥
N

).

Ultimately, as N →∞, d̄→ (µ‖, µ⊥). This result is true regardless of the underlying

distribution of v‖ and v⊥ (provided the variance of the distributions is finite), allowing

it to be applied even when the tails of the underlying velocity distribution are

very heavy (as in this case).

The upshot of this process is that the noisiness associated with short timescale

motion will tend to cancel out as the timescale increases, leaving net movement
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Figure 4.5: Noise associated with short timescale movement of cells is averaged out at
long timescales. a) Joint probability density function for all instantaneous movements
in the ∆t = 0.0079 s dataset. Movement vectors were rotated by θlead and split into
separate components parallel to the cell’s long axis (v‖) and perpendicular to the long
axis (v⊥). The twitching/crawling threshold vt is shown for reference (dotted circle).
(Inset) Magnification of core region of distribution (shown as square on main plot). The
average instantaneous movement vector in this leading pole-oriented space is plotted
on top. b) Simulated trajectory based on random sampling from the distribution of
instantaneous velocities in (a). Magnification of indicated regions increases down panel.
The net movement was predicted based on the average cell velocity vector (black dot). c)
RMSD plot for experimental trajectories, plotted on log-log axes. Best-fit exponents for
specified portions of the data are also indicated.

dominated by the average movement vector1. To illustrate this effect, long timescale

trajectories were simulated by randomly sampling the joint velocity distribution

shown in figure 4.5a. These simulated cells moved from left to right with no change

in their orientation (figure 4.5b). The end cell position was also estimated by

assuming each cell moved at a constant velocity equal to the average movement
1Note that sampling the trajectory at a lower rate of ∆t will have a similar averaging effect, as

a larger timescale movement will be the sum of many smaller timescale movements. This explains
why the velocity distributions of figure 4.3b have less heavy tails than the distribution of figure
4.4a - each timestep in the ∆t = 1 s dataset is effectively made up of the sum of 127 timesteps
from the ∆t = 0.0079 s dataset, resulting in convergence on a Gaussian distribution through the
central limit theorem.
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vector. As expected, despite the microscopic behaviour being extremely noisy and

disrupted by high-velocity twitches, the long timescale behaviour was very well

predicted by the constant-velocity model.

These analyses demonstrate that noisy individual motility can, in principle,

eventually give way to coherent cell movement. However, they do not directly

show that qualitatively different types of motion occur at fundamentally different

timescales. A common way of demonstrating the existence of different types of

movement at different timescales is to measure how the RMSD (equation 1.2)

scales with τ within specific subranges of τ [12, 136]. This can be achieved by

fitting the proportionality
√
M ∝ Aτ γ to specified subsamples of the data, with

the resulting value of the parameter γ indicating the type of motion (superdiffusive

or subdiffusive) present at that range of timescales.

Performing this analysis on the ∆t = 0.0079 s tracking data demonstrated

that there were two distinct timescales present in the dataset (figure 4.5d): below

τ ≈ 0.1 s, γ = 0.59, indicating weakly superdiffusive cell movement. The fitted

value of γ increased at larger values of τ , in line with previous measurements of

isolated twitching cells at these timescales [136]. At τ ≈ 1 s, the timescale of

the ∆t = 1 s dataset, γ = 0.67. This suggests that there is a transition to more

directional movement at longer timescales.

4.3 Cellular flows around monolayer topological
defects are predicted by active nematic the-
ory

Theory suggests that active turbulence can result from the behaviour of topological

defects within active nematics (section 1.3.1) [167, 169]. The monolayer displays

many of the fundamental characteristics of an active nematic, being composed

of individual agents that align with each other and impose a self-generated force

on their neighbours. Does this mean that active nematic theory can be used to
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understand the collective behaviours of the monolayer? With the single-cell track

data now in place, we are in a good position to answer this question.

Comet and trefoil defects are characteristic of 2D active nematics, and simply

observing them in a system with orientational order is strong evidence that the

system has nematic (rather than polar) symmetry [180]. Visual inspection of

the monolayer suggested that these defects were present, but to analyse their

behaviour in greater detail, an automated pipeline for detecting and tracking them

in monolayers was developed.

4.3.1 Automated defect detection and tracking

Comets and trefoils occur at singularities in cell orientation. To automatically

locate these singularities, a similar approach to that described in [173] is used:

in the first stage, the OrientationJ plugin for Fiji is used to estimate the local

orientation of cells in brightfield images (figure 4.6a) based on the tensor method

[261]. This process yields the orientation of the system, θ = [−π
2 ,

π
2 ), at each

pixel within the input image (figure 4.6b).

The location of defects in the orientation fields are detected using a Matlab

script that employs a discretised version of the standard path integral definition of

a nematic defect (equation 1.3). The charge, k, of each pixel is calculated as:

k = 1
2π

9∑
i=2

[θi − θi−1], (4.4)

where θi is the cell orientation field at each of the 8 neighbouring pixels, specifying

that θ9 = θ1 to form a continuous path around the pixel. By definition, θ1, θ2...θ9

are ordered sequentially in an anticlockwise direction around the target pixel. This

calculation is repeated for each pixel in the orientation field, except for those pixels

along the edge of the field of view that are missing neighbours. Defects cores are

defined as positions with non-zero values of k, with k = 1
2 at the location of comets,

k = −1
2 at the location of trefoils, and k = 0 everywhere else (figure 4.6c).
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Figure 4.6: Defect detection pipeline. a) Raw brightfield image of a WT monolayer
with automatically detected comet (red circles, orange arrows) and trefoil (blue triangles,
cyan spokes) defects. Arrows and spokes indicate defect orientation. b) Orientation field
of (a) as derived using OrientationJ, showing defect cores as ‘pinwheel’ discontinuities. c)
Magnification of indicated regions from (a) (upper) and (b) (lower), showing example
structures of trefoil (left) and comet (right) defects in the monolayer.

Having located the defects, their orientations are next determined. To do this,

a set of pixels is defined that form an approximately circular path at a distance of

5 pixels from the defect core. For each of these pixels, the angle of the line joining

the defect core to the pixel in question is measured and compared to the value of θ

at that pixel’s location. The defect orientation is defined to be the orientation of

the line for which the difference between these two angles is smallest [262].

Small-scale fluctuations in the monolayer (such as a high-velocity twitch by a

single cell) can generate pairs of defects that rapidly re-annihilate through elastic

relaxation of the monolayer. These defects have little to do with the overall

dynamics of the system, and need to be removed from further analysis. In this

case, FAST is used to generate defect tracks using defect position, orientation and

charge as features. Fluctuation-associated defects can then be removed simply

by eliminating all tracks shorter than a threshold duration - here, a cutoff of 5 s

is used. This is the best way of removing these spurious defects, as it explicitly

links their lifespan to their inclusion or removal.
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Unfortunately, as we will see in the next chapter, phototoxicity and photo-

bleaching can severely limit the framerate of imaging when using epifluoresence

microscopy. In these cases, the temporal resolution of the dataset is insufficient

to allow reliable generation of defect tracks. Instead, a spatial criterion is used

to eliminate fluctuation-associated defects. This is based on the observation that

defects are inherently coarse-grained structures, well-defined only at a lengthscales

incorporating multiple cells. To express this, a threshold distance of 2lc is imposed on

defects of opposing sign. Opposing sign defect pairs less than this distance apart are

removed from the dataset, an operation that preserves the overall topological

charge of the system.

For the monolayer used in sections 4.1 and 4.2.1, use of the track-based procedure

described above generated a set of 1,382 tracks of comet defects and 1,344 tracks

of trefoil defects.

4.3.2 Analytical and experimental defect-centric cell flow-
fields closely resemble each other

Defect-centric flowfields can be be calculated for analytical models of extensile

active nematics by placing isolated defects within a circular domain with no-slip

boundary conditions and calculating the active stresses generated under steady

state conditions [180]. Examples of such flowfields are shown to the left of figure

4.7. These can be regarded as a prediction of cellular movement around topological

defects, assuming a) that the monolayer is indeed behaving as an active nematic,

b) that active forces dominate over elastic forces around defects, and c) that the

regions of low nematic order associated with defect cores are of negligible size.

To test these predictions, experimental defect-centric flowfields were calculated

by combining the cellular tracks, describing the motion of individual cells, with

the defect tracks, describing the position of the higher-order topological defects.

Instantaneous cell velocity vectors were initially transformed into a defect-centred

and defect-oriented coordinate space. These transformations did not subtract the
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movement vector of each defect from the movement vector of each cell, thereby

ensuring that the movement of cells around defects was measured in the laboratory

reference frame rather than in the reference frame of the defects. Defect-centred

measurements of cell velocity were collated for comets and trefoils separately, and

then binned using a two-dimensional grid with points spaced by lc in both the x

and y directions. Averaging of the contents of each bin resulted in the experimental

defect-centric flowfields shown to the right of figure 4.7.

The characteristic counter-rotational vortices of the theoretical flowfields are well

replicated by the experimental flowfields, supporting the idea that the monolayer

behaves like an active nematic. Several features of the experimental flowfields

do differ from the prediction: the comet defect flowfield is asymmetric about the

head/tail axis, with a stagnation point close to the head. In addition, in front of this

stagnation point are two additional low activity counter-rotational vortices. The

trefoil defect flowfield is also considerably more motile (relative to the comet flowfield)

than the theoretical prediction. In general however, the quality and resolution of the

experimental flowfields are substantially better than previous measurements [173].

Theoretical arguments suggest that the extent of the defect flowfield should

be related to the vortical lengthscale lv [169, 184]. In these models, the counter-

rotational vortices of the defect flowfields produce the counter-rotational vortices of

the overall flowfield (figure 4.1c). The radius of the defect flowfields should therefore

be ≈ lv. This prediction is largely borne out by the experimental flowfields, although

the effective radius of the comet flowfield is slightly smaller than lv while the trefoil

flowfield is somewhat larger.

4.4 Discussion

4.4.1 The monolayer is a multiscale system

We have seen evidence in this chapter that at least three timescales exist within the

monolayer (figure 4.8). At short timescales, cell movement is dominated by noisy

twitches with no overall bias. Over longer timescales, these twitching movements
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Figure 4.7: Defect-centric flowfields calculated from an analytical model of an extensile
active nematic (right) [180] and averaged PTV data (left). For the analytical model, it is
assumed that the flow speed at the boundary of the circular domain is zero. The overall
structure of the flowfield remains consistent, regardless of the radius of domain chosen.
Background colour indicates local mean flow speed, with streamlines plotted in red on
top.
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average out, allowing the slower but more coherent crawls to generate directional

overall motion. Ultimately, these directional movements combine with orientational

alignments between cells to generate the collective motions characteristic of active

nematic systems.

The lessons learned regarding the link between noisy short timescale single-cell

dynamics and long timescale monolayer dynamics are probably applicable to other

active matter systems. Both eukaryotic and prokaryotic swimming cells have their

own idiosyncratic motility patterns: both individual sperm cells and B. subtilis cells

wiggle from side to side as a result of the periodic beating and rotation, respectively,

of their flagella [263, 264]. Furthermore, as part of their chemotactic response

apparatus, B. subtilis cells occasionally reverse the direction of one of their flagella

and undergo a ‘tumble’ that randomises their direction of motion [265]. Despite

these disparate individual behaviours though, the resulting collective behaviours

are strikingly similar to those observed in the twitching monolayer [163, 165]. This

convergence on a single collective motility pattern is probably driven, at least in

part, by a similar averaging out of unbiased movements as described here. However,

the inability to track the movements of individuals within these systems makes

it difficult to assess if this is the case. The P. aeruginosa monolayer therefore

offers one particular advantage compared these other systems, in that it is possible

to explicitly study the movements of individuals within it and understand how

they contribute to the dynamics of the collective.

In principle, it should be possible to use this fact to study the transition from

individual-dominated to collective-dominated motion by tracking individuals for

very long periods of time. Almost by definition, agents within active nematics

undergoing active turbulence must follow non-linear paths through the nematic over

long timescales. Based on the arguments outlined in chapter 1 (section 1.2.7.1), we

might expect to see a ballistic to diffusive transition in the corresponding RMSD

plots for these trajectories. Unfortunately, the trajectories from the ∆t = 1 s dataset

are currently of insufficient length to accurately capture this transition. Similar
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Figure 4.8: The monolayer as a multiscale system. At the shortest length and timescales,
individual motion is dominated by noisy twitches and jostling from surrounding cells
(left). At intermediate scales, temporal averaging of noise allows coherent movement
towards a leading pole (middle). At long scales, active turbulence emerges within the
monolayer. Cells change their orientation as they traverse the resulting vortex network,
forming curving tracks (right). Tracks shown are (left) real track from the ∆t = 0.0079 s
dataset (total time = 2 s), (middle) real track from the ∆t = 1 s dataset (total time = 50
s), and (right) reconstructed track generated from integration of the ∆t = 1 s flowfield
(total time = 600 s). In each track, red dots indicate sampling points and black spot
indicates track starting point.

to [253], theoretical reconstructions of single-cell PTV tracks can be generated

by integrating the time-dependent ∆t = 1 s PIV flowfield (figure 4.8, right), but

there is no guarantee that these reconstructions resemble real single-cell tracks.

Even small inaccuracies in the PIV flowfield will result in reconstructed tracks

switching between multiple cells, potentially missing any heterogeneity in single-

cell behaviours. However, combining FAST with improved imaging techniques

should allow reconstruction of very long tracks in the near future, allowing this

transition to be accurately resolved.

4.4.2 Origins and roles of twitches

The short duration twitches described in section 4.2.2 have been qualitatively

observed before; this is, after all, how twitching motility got its name [46]. However,

they have previously only been quantified in isolated cells. These analyses have

suggested that twitches are probably driven by detachment or breakage of individual

pili, leading to a rapid movement of the cell body as remaining substrate-attached

pili rebalance their tensions [139, 142, 143].

Interestingly, previous work has suggested that twitches should contain a strong

rotational component [142]. Although we do see isolated examples of such motions
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(e.g. figure 4.4d) the twitches described here are tightly oriented along the cell

axis (figure 4.4f). This appears to be the result of the influence by surrounding

cells. Nearby cells are typically strongly aligned with the twitching cell, and tend

to ‘corral’ the cell during the twitch (e.g. figure 4.4b). These differences between

the twitches of isolated and communal cells suggest that the effect of twitches

may vary between ecological situations.

We have also seen evidence that twitches are not biased towards the leading

pole (figure 4.4f), causing them to average out over long timescales. This leads

to the slightly bizarre conclusion that the largest individual movements have the

smallest impact on overall movement, which begs the question of why they exist at

all. It has previously been suggested that they may enhance cell steering through

‘oversteering’, allowing the rear end of the cell to lose traction with the surface

and permitting quick rotations [142]. However, as previously discussed, this effect

appears to be eliminated within the monolayer through corralling by surrounding

cells. In addition, such reorientations appear to unregulated by the cell. As many

cellular behaviours rely upon the tight control of movement direction [20, 144], it

seems unlikely that uncontrolled steering would improve the fitness of isolated cells.

It has also been suggested that twitches may improve movement through the

glue-like extracellular polymeric substances (EPS) that form the matrix surrounding

cells. Rapid movements may reduce the effective viscosity of the EPS through

shear thinning [142]. This is probably more likely, especially in biofilms where the

concentration of EPS is particularly high [266, 267]. Twitching through EPS may also

restructure it, allowing it to more efficiently guide the movement of collectives within

biofilms [191]. Finally, twitching may play a role in boosting orientational alignment

within the monolayer through the ‘shoving’ of neighbouring cells (figure 4.4e).

An alternative perspective is simply that twitches are an inevitable consequence

of the pilus-based motility system. In this view, the advantages of being able to move

effectively on surfaces vastly outweigh the costs of twitching, and the disadvantage

of wasting energy repeatedly moving forwards and backwards is simply a necessary
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evil of the motility mechanism. Growth in P. aeruginosa biofilms is isolated to

a zone only ≈50 µm thick, due to limited oxygen and nutrient penetration [24].

This limited penetration leads to enormous nutrient gradients, substantially larger

than those encountered by swimming cells. In this context, any form of motility,

even if slow or inefficient, will still confer a substantial benefit by allowing cells

to actively move into the growing edge of the colony.
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It is better to be alone than in bad company.

— Anonymous, 110 Rules of Civility & Decent
Behaviour in Company and Conversation

5
The sorting crowd: Defects mediate

self-segregation of mixed force populations

In the previous chapter, we saw that the WT P. aeruginosa monolayer behaves as

an active nematic over timescales larger than a few minutes. Similar phenomena

have been noted in other living systems [163–165]. These results suggest that

processes and structures associated with active matter, such as active turbulence and

topological defects, have relevance to understanding the evolution and development

of organisms; we will see an example of such a situation in the next chapter. But the

complexity of living systems generally makes them difficult to use when testing our

understanding of the physics of active matter. In simpler artificial systems, control

parameters such as agent activity and density can be manipulated on-demand

through external changes to the system [162, 167]. Unfortunately, equivalent

external perturbations (such as changes in oxygen concentration or temperature)

can induce a raft of poorly understood physiological responses when applied to living

organisms. Ultimately, these can create relationships between the perturbation and

the behaviour of the collective that are very difficult to interpret.

Nevertheless, there are many questions that cannot be easily be addressed using

artificial systems either. A long-standing theoretical prediction from the active
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matter literature is that two-dimensional mixtures of active rods and passive rods

should spontaneously unmix [268]. The original motivation for this model was to

explain how bacteria could segregate within biofilms based purely on physical inter-

actions. Despite the potentially general relevance of this prediction for explaining

the patterning of biofilms however, it has not yet been demonstrated experimentally.

This appears to be at least partially because we lack a system in which to test

the hypothesis, as it is difficult to create mixtures of artificial agents with differing

properties. To test this hypothesis, we require a new experimental system.

One response to these challenges is to apply an internal perturbation to

individual living agents by manipulating their genetic composition. This solves

two problems at once, allowing us to manipulate active systems without applying

external perturbations and allowing us to form mixtures of agents with differing

properties. We can achieve this in P. aeruginosa by eliminating elements of the

Pil-Chp system. Many of these mutants are known to completely lack pilus-based

movement: removal of the major pilin PilA, the pilin maturation proteins PilC

and PilD, the pilus assembly motor PilB, the retraction motors PilT and PilU

or the elements of the mechanosensory pathway PilJ and ChpA all result in the

total loss of twitching activity [20, 108, 114, 269]. However, while it is very easy

to break the twitching motility system, it is more difficult to apply more subtle

manipulations. To test our theoretical models of active matter fully, we require

strains with altered but still functional motility.

In this chapter, I will show how the P. aeruginosa monolayer can be used as

an experimental model of active matter, using it to test the unmixing hypothesis.

I will show that predictions of this model are replicated within monolayers of P.

aeruginosa by mixing a newly characterised high-force mutant, ∆pilH , with the

low-force WT. I will also demonstrate that segregation is driven by enrichment of

the ∆pilH cell type at comet defects and the WT at trefoil defects, demonstrating

that the unmixing process is linked to active nematic theory. Finally, I will use a

self propelled rod (SPR) model to verify that the unmixing effect is also related
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to topological defects in simulations, demonstrating that the observed unmixing

phenomenon is purely driven by differences in force generation between agents.

5.1 The ∆pilH mutant: a third point in the ac-
tive nematic parameter space

As discussed in section 1.2.6, the pilH gene encodes a response regulator involved

in the regulation of twitching motility. It is homologous both to PilG, another

response regulator within P. aeruginosa, and to CheY, a response regulator in the

chemotactic pathway of many bacterial species [109]. Its deletion has previously

been shown to induce hyperpiliation [108] and increased levels of intracellular cAMP

[114]. However, aside from initial observations of unusual ring-shaped collections of

cells at the leading edge of colonies [109], little has been published describing the

properties of the ∆pilH mutant at the single-cell level. The exception to this has

been the recent discovery of extremely high motility of individual ∆pilH cells in

microfluidic devices, with individual cells moving around thirty times faster than

the WT [20]. Although this previously published microfluidic-based observation

was intriguing, the ∆pilH cells involved were undergoing walking motility, a form

known to be inherently faster than crawling motility [270]. The subsurface assay

was therefore used to enforce crawling motility in both ∆pilH and the WT.

5.1.1 ∆pilH cells generate more pulling force than the WT

A monolayer of ∆pilH cells was initialized in the same way as the WT monolayer

used in the previous chapter, with imaging initialised at 16 hours post-inoculation

to allow the steady-state expansion regime to establish itself. The monolayer was

imaged at 1 frame per second in the brightfield channel, and timelapse movies were

processed using FAST to extract single-cell characteristics. The average speed of each

cell was then estimated as the average taken across the entire duration of each track

(figure 5.1a). This revealed that ∆pilH cells moved substantially faster than the WT,

with an average speed of 13.3 µm min−1 compared to 7.4 µm min−1 for the WT.
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Figure 5.1: WT and ∆pilH cells possess distinct morphological and motility character-
istics. a,b) Histograms of average WT (black) and ∆pilH (orange) cell speeds, measured
in separate high-density subsurface monocultures (a) and a mixed low-density subsurface
co-culture (b). Insets: (a) Example segmentations of brightfield channel of separate ∆pilH
(left) and WT (right) monolayers. (b) Genotypic identities of strains in representitive
region of low-density experiment. WT (cyan) and ∆pilH (yellow) cells were distinguished
with fluorescence. Spatial scales are equal between insets of (a) and (b). c) Boxplots
of lengths of WT (black) and ∆pilH (orange) cells in a mixed high-density subsurface
monolayer, mixed low-density subsurface colony and mixed exponential phase liquid
culture. Lengths were quantified by manual (monolayer) and automated (low-density,
liquid) fitting of ellipses to cell profiles. The ∆pilH cell type is significantly longer in all
environments (∗ = p < 10−3, ∗∗ = p < 10−10, Mann-Whitney U test).

∆pilH monolayers are lower density than WT monolayers (figure 5.1a, inset).

Cells in ∆pilH monolayers therefore have more room in which to move, which

could potentially explain the greater speed of the ∆pilH cell type even if the force

generation of the two strains is the same. To ensure that both cell types experienced

the same environmental conditions and to eliminate the influence of collective

effects on cell motility, a mixed low-density subsurface co-culture of YFP-labelled

∆pilH and CFP-labelled WT cells was prepared. This was incubated at room

temperature for three hours, allowing surface adaptation by the strains to fully

take place [112]. At this point, cells in the low-density central region of the initial
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inoculation spot were around 50 times less densely packed than in the high-density

monolayer. Similar to the monolayers, timelapse sequences of these cells were then

taken at 1 frame per second, using fluoresence to distinguish cell type. Analysis

with FAST again revealed a clear speed advantage for the ∆pilH cell type, with

an average single-track speed of 6.4 µm min−1 compared to 3.3 µm min−1 for

the WT (figure 5.1b). Based on this collection of results, it was concluded that

the ∆pilH cell type generates more force than the WT. This allows it to better

overcome the frictional resistance offered by the surrounding agar substrate and

so approach the pilus retraction speed of ≈30 µm min−1[52], which presumably

sets the upper limit of average movement speed1.

As ∆pilH cells contain around 10 times more intracellular cAMP than WT

cells [114] and cAMP levels correlate with cellular movement (figure 3.8), this

observation of greater force generation by the mutant is perhaps not surprising.

However, previous studies have inferred that ∆pilH generates less force than the WT,

based on its reduced ability to expand into new territory in subsurface colonies[108,

109]; we shall return to this point in the next chapter.

5.1.2 ∆pilH cells are longer than WT cells

Visual inspection of ∆pilH and WT monolayers suggested that individual ∆pilH

cells were longer than the WT. Previous modelling suggests that cell length is

of fundamental importance to defining the dynamic properties of populations

of cells [163, 194, 268], indicating that this morphological effect of the ∆pilH

mutation could be important for understanding any changes in the dynamics of the

monolayer. To investigate this observation in detail, the shapes of individual cells

were measured in a mixed high-density monolayer, a mixed low-density subsurface

culture and a mixed liquid culture (figure 5.1c). In each case, the ∆pilH mutant

was found to be significantly longer than the WT (p < 10−3, Mann-Whitney
1We saw in the previous chapter that cells can reach instantaneous speeds much greater than

this, but as these ‘twitches’ appear to be driven by the rapid rebalancing of tensions between
attached pili following pilus detachment [139, 143], they typically last for only a few milliseconds.
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Figure 5.2: The ∆pilH monolayer behaves as an active nematic. a) Comet and trefoil
defects in a ∆pilH monolayer, detected using the automated defect detection pipeline
described in section 4.3.1. Format is as in figure 4.6. b) Defect-centric flowfields associated
with ∆pilH monolayer (bottom) for trefoil (left) and comet (right) defects. WT flowfields
from figure 4.7 included for reference (top). Note that the spatial scale is 43% larger than
that shown in figure 4.7. Format is as in figure 4.7.

U test). Based on the measurements of length in the high-density monolayer

(the system most representative of the following experiments), the aspect ratio

of ∆pilH was taken as a = 5.

Because of this variability in cell length, we here switch from defining the

characteristic length scale of the system as cell length (lc) (as used in the previous

chapter) to cell width (lw), which is consistent between strains at 0.8 µm. For

comparison, the average WT cellular aspect ratio a = 4, i.e. lc = 4lw.
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5.1.3 ∆pilH monolayers are also active nematics

Given these differences between the WT and the ∆pilH mutant, does ∆pilH still

behave as an active nematic in monolayers? To address this question, the high-

density ∆pilH monolayer dataset was analysed with the defect detection pipeline

described in section 4.3.1. As in the WT, comet and trefoil defects spontaneously

emerged and annihilated (figure 5.2a). Flowfield analysis also confirmed that cell

movements around the two defect types corresponded to those predicted for an

extensile active nematic, as in the WT (figure 5.2b). Defect-centric flowfields for

the ∆pilH monolayer were somewhat larger in spatial scale than those of the WT,

with stagnation points for both defect types forming ≈30% further away from the

defect core. The speed of the averaged comet flowfield was 2.3 µm min−1 at the

defect core, compared to 1.1 µm min−1 for the WT, supporting the observation

that ∆pilH cells move around twice as fast as the WT in this environment [179].

5.2 Mixed ∆pilH/WT monolayers undergo seg-
regation through a defect-mediated mecha-
nism

The motility-associated segregation mechanism of [268] is based on a mixture of

passive (non-motile) and active (motile) rods. To test the predictions of this model,

the most direct experimental approach would be to mix passive (∆pilB) and active

(WT or ∆pilH ) cells. Unfortunately, growth of cells in our living experimental system

can cause populations to segregate through a second, independent mechanism: cell

division can lead to the formation and expansion of clonal patches of cells. This

is particularly important for passive cells, which are unable to disperse growth-

generated patches through active movement.

To avoid the confounding of the motility-based and growth-based segregation

mechanisms, segregation experiments were performed on mixtures of the WT and

∆pilH strains. Both are active, and as discussed in the previous section possess
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differing activity levels. Using this mixture ensures that clonal patches are dispersed

through movement by both strains, while at the same time the difference in activity

levels allows any motility-based segregation mechanism to manifest.

5.2.1 Imaging of mixed monolayers

To discount the growth-based segregation mechanism, we must assume that the

timescale of motility is substantially faster than the timescale of cell division. If

this is true, any incipient growth-based structure will be destroyed by the active

mixing of the populations before any further rounds of cell division can take

place. Experimentally, this assumption can be tested by including mixtures of

separately labelled ∆pilH and WT populations (e.g. ∆pilH -YFP/∆pilH -CFP and

WT-YFP/WT-CFP) as controls. As differences in fluorophore expression do not

alter cellular behaviour (figure 2.2), both strains in these control mixtures will

have the same motility characteristics. Any segregation that emerges between

the different populations in these controls can therefore be purely attributed to

the growth-based mechanism.

As the test mixture, YFP-labelled ∆pilH cells and CFP-labelled WT cells

were mixed at a 1:1 ratio in liquid culture and used to initiate subsurface colonies.

Control mixtures of ∆pilH -YFP/∆pilH -CFP and WT-YFP/WT-CFP were also

prepared and imaged on the same agar pad. All three colonies were imaged at a

framerate of 6 frames per hour in the YFP, CFP and brightfield channels. At early

times, the density of the system was extremely low. As the experiment progressed,

cell division led to a gradual increase in cell density up to the formation of a

confluent monolayer. The final timepoint of each experiment was defined as the

point at which three-dimensional structures began to form. Beyond this point,

the intrinsically two-dimensional epifluorescence imaging was no longer able to

fully capture the structure of the community.

For generality, one population within each mixture discussed in this chapter

will be labelled as the ‘reference’ population, and the second will be labelled as the
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‘test’ population. In the ∆pilH -YFP/∆pilH -CFP, ∆pilH -YFP/WT-CFP and WT-

YFP/WT-CFP colonies for example, the CFP-labelled population in each mixture

will be defined as the reference population while the YFP-labelled population

will be defined as the test population. This framework will allow a single set of

analytical tools to be applied to each dataset.

5.2.2 Automated separation of populations within mono-
layers

To analyse this experimentally derived monolayer data, binary images representing

the spatial coverage of the two cell types are required. These indicate if a given cell

population (reference or test) is present or absent at spatial location r in frame t,

and will be referred to as the strain localisation images R(r, t) and T (r, t) (for

reference and test populations, respectively). Generating these images automatically

based on the raw imaging data was challenging for several reasons: changes in

fluorescent protein brightness drove variation in fluorescence levels over the course

of each experiment. The imaging setup also caused slight systematic variations in

fluorescence intensity over the field of view. Finally, late stage subsurface colonies

reached densities and geometries that were difficult to segment into individual cells.

A new analytical pipeline was therefore developed to robustly assign each pixel

to one the two cell types in the mixture. We begin with three pieces of information:

the brightfield image, the YFP-channel image and the CFP-channel image. In

the first stage, a global threshold (based on Otsu’s method [271]) is applied to

the pre-processed brightfield image to establish each pixel as either being within a

cell body or outside a cell body (figure 5.3a). A pixelwise ratio of the YFP and

CFP images is then calculated, resulting in a new image of pixel ratios (figure

5.3b). As inhomogeneities in the images are mostly caused by variations in the

illumination within a field of view that are shared between channels, taking this

ratio of pixel values reduces the impact of these systematic inhomogeneities. The

resulting ratiometric image contains three populations of pixels: 1) pixels with
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Figure 5.3: Pipeline for estimating strain composition of different colony regions. a)
Segmentation of subsection of subsurface colony into cell-occupied (white) and cell-free
(black) regions based on Otsu-thresholded brightfield image. b) Pixelwise ratio of YFP
to CFP images for same image subsection. c) Histogram of pixel values from (b) for all
regions defined as cell-free in (a). The median background value is defined as the median
pixel value from this population. d) Histogram of pixel values from (b) for all regions
defined as cell-occupied in (a). The previously defined median background value is used
to split this into CFP-labelled pixels (below threshold) and YFP-labelled pixels (above
threshold). e) Result of applying pixel identities defined in (d) to segmentation (a).

low values (corresponding to CFP expressing cells), 2) pixels with high values

(corresponding to YFP expressing cells) and 3) pixels with intermediate values

(corresponding to the background). By finding this intermediate background value

and using it as a threshold, the within-cell pixels can automatically be split into

YFP and CFP expressing populations. This is achieved by splitting the ratiometric

image into outside-cell (figure 5.3c) and inside-cell (figure 5.3d) populations based

on the brightfield segmentation, finding the median value of the outside-cell pixels

and using this to split the inside-cell histogram into the populations of pixels

corresponding to YFP and CFP-expressing cells (figure 5.3e). The resulting pair of
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images are exactly the strain localisation images R(r, t) (the binarised CFP image)

and T (r, t) (the binarised YFP image) that are required.

Given the bimodal distribution of pixel values shown in figure 5.3d, other

techniques may seem more appropriate for assigning pixels. In the case of the

within-cell histogram shown in figure 5.3d we might consider choosing the minimum

of the valley between the two pixel populations as the YFP/CFP cutoff, or calculate

it using Otsu’s method [271]. However, as we will see in the next chapter, regions of

the expanding colony can become entirely composed of a single cell type, resulting in

a unimodal within-cell pixel distribution. An advantage of the above pipeline is that

it does not inherently assume the presence of two separate populations of pixels,

unlike histogram splitting methods such. This makes it robust to depletion of

one of the cell types.

To calculate the packing fraction, ρ(t), we could in principle use the previously

generated brightfield segmentations (e.g. figure 5.3a): ρ(t) would then be calculated

simply as the ratio of the number of ‘active’ pixels (those in the ‘on’ state within

the binary image) to the total number of pixels in the image. However, ρ(t) would

be artificially decreased by the ridges of inactive pixels between densely-packed cells.

Cellular material is still present at these cell-cell contact points, but is thinner than

in the middle of the cell body because of the spherocylindrical geometry of the cells.

This thinning increases light transmission, and creates the bright ridges between

cells used to segment the monolayer (figure 3.1). To remove these ridges from

the brightfield segmentation, morphological closure (an operation that adds layers

of pixels to the boundary of segmented objects) is applied. The packing fraction

ρ(t) is then calculated as the ratio of active pixels in this closed segmentation

to the total number of pixels.

5.2.3 Mixed WT/∆pilH monolayers undergo segregation

Simulations with hard rods suggest that the amount of unmixing observed in the

monolayer should correlate with the packing fraction ρ of the system [268]. To
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test this prediction, a measure of the degree of segregation in the monolayer is

needed. In [268], a segregation index σ(t) is used to quantify precisely this effect;

here, a pixel-based version of the same segregation index is used. Initially, a box

is drawn around each pixel i. Within each box, the number of pixels belonging

to the test population Ti and the reference population Ri is counted2. σ is then

calculated on a frame-by-frame basis as:

σ = (Tg +Rg)2

2TgRg

∑
i

ni
ng
|fi − fg| , (5.1)

where fi = Ti
Ti+Ri (the test fraction inside box i), fg = Tg

Tg+Rg (the global test fraction),

ni = Ti + Ri (the total amount of material inside box i) and ng = ∑
i Ti + ∑

iRi

(the global amount of material in the system). The initial term in this equation acts

as a normalisation constant to ensure that 0 ≤ σ ≤ 1. σ is used as a measure of

segregation to facilitate direct comparison with [268], but the results described here

are not critically dependent upon its definition. Segregation indices more commonly

used in bacterial ecology (e.g. [272, 273]) produce similar measurements to σ.

Segregation indices such as σ that are based on measuring statistics within a

window are known to be sensitive to the multiple unit area problem (MUAP), in

which the value of the measure is dependent upon the size of the window chosen [268,

274]. This can be understood in the case of σ by considering extreme window sizes:

for tiny windows, only pixels from the same cell will be included in the measurement

of fi, resulting in σ = 1. At the other extreme, the window that spans the entire

image will include all cells, such that fi = fg. Thus, the segregation index σ = 0.

For window sizes between these two extremes, the value of the segregation index

is dependent upon both the number of cells included within the window and on

the spatial scale of any segregation-associated structures. To resolve this problem,

the window size is scaled by 1
ρ
, so that approximately the same number of cells

(≈50) are included within the window at each timepoint.
2Practically, these two steps are combined by performing a convolution over T (r, t) and R(r, t)

using a rectangular kernel of the same size as the desired window.
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Figure 5.4: Mixed WT/∆pilH monolayers display motility-induced segregation. a)
Areal packing fraction ρ versus segregation index σ for a mixed WT/∆pilH monolayer
(red), along with ∆pilH/∆pilH (blue) and WT/WT (yellow) control monolayers. Each
datapoint indicates a single image. Lines indicate linear regression for corresponding
datasets. b) Average ∆pilH cell speed centred around cell touching (light orange, n = 41)
and cell untouching (dark orange, n = 47) events in a low-density subsurface monoculture
assay. Events were manually assigned to tracks.

The segregation index σ was measured for each frame of the three co-culture

experiments (∆pilH -YFP/∆pilH -CFP, ∆pilH -YFP/WT-CFP and WT-YFP/WT-

CFP). Because ρ of the system increased over time, σ could easily be calculated

over a range of values of ρ (figure 5.4a). As predicted, σ is strongly correlated

with ρ in the ∆pilH/WT co-culture, suggesting that the observed segregation is

indeed driven by the collective effects of motility in the monolayer. This correlation

was highly significant (p < 10−10, Pearson correlation coefficient test). In contrast,

both the WT/WT and ∆pilH/∆pilH controls showed an insignificant correlation

between ρ and σ (p > 0.05, Pearson correlation coefficient test). This confirmed

that the rescaling of the sampling window with ρ was sufficient to eliminate spurious

correlations between ρ and σ based purely on the MUAP, and also that the motility

of both strains was sufficient to eliminate the growth-based segregation mechanism.

These controls also demonstrated that processes associated with the aging of the

monolayer (such as a global reduction in cell speed over time) were not responsible
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for driving the segregation observed in the ∆pilH/WT co-culture.

An alternative mechanism to any motility-associated phenomenon that could

explain the observed cellular segregation is that ∆pilH cells are more adhesive than

the WT due to their overexpression of pili. This differential adhesion has previously

been shown to drive the segregation of different populations of N. gonorrhoeae [205].

To test the impact of this process in the subsurface colony, a low-density assay

consisting purely of ∆pilH cells was prepared. After inoculation for 3 hours at

room temperature, a subpopulation of cells in the colony were able to overcome

the frictional resistance of the confining agar and move freely as individuals. It was

reasoned that cellular adhesion would result in a reduction in cell speed following

cell-cell contact and an increase in speed as cells moved apart from one another. To

test this hypothesis, the speed of cells around manually assigned cell-cell ‘touching’

and ‘untouching’ events was measured using FAST (figure 5.4b). Although there is

a spike in cell velocity at the time of the events themselves (as detection of both

touching and untouching events requires cell movement at the event time), the

velocity profile for both event types is approximately symmetrical about the event

time. This suggests that cell movement is unaffected by cell-cell contact, leading to

the conclusion that ∆pilH cells do not adhere to each other. Further supporting

this conclusion, stable aggregates of cells did not form in this low-density system.

5.2.4 WT/∆pilH segregation is defect-mediated

The co-culture images suggested that WT and ∆pilH cells were randomly mixed

together at low packing fractions, corresponding to a low value of σ at these densities

(figure 5.5a). However, they also suggested that the high-force generating ∆pilH

mutant accumulated at comet defects at high packing fractions (figure 5.5b). The

extent of enrichment of the test population (∆pilH ) at defects was quantified

by using the normalised enrichment maps γp(rp, t) and γm(rp, t), calculated

separately for comet (p) and trefoil (m) defects.
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Figure 5.5: Segregation of cells in mixed monolayers is a defect-mediated process.
a,b) Example images from low packing fraction (ρ = 0.04) (a) and high packing
fraction (ρ = 0.91) (b) timepoints of a mixed WT/∆pilH monolayer. Images have
been processed as in figure 5.3e, with automatically detected defects from the brightfield
channel overlaid. c) Packing fraction ρ versus spatially averaged value of the normalised
enrichment maps γp(rp, t) (circles, solid lines) and γm(rm, t) (triangles, dotted lines) within
a 10lw×10lw window drawn around defect core. γp(rp, t), γm(rm, t) and ρ were calculated
separately for each frame t. Data for separate ∆pilH/∆pilH (blue), ∆pilH/WT (red) and
WT/WT (yellow) monolayers shown, with coloured lines indicating linear regression for
corresponding datasets. Black dotted line at γ = 0.5 indicates equal presence of both cell
types at defect cores. d) Normalised enrichment maps for mixed ∆pilH/WT monolayer,
averaged over low-density (0 < ρ < 0.3) and high-density (0.8 < ρ < 1.0) frames.
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γp(rp, t) and γm(rm, t) are calculated using the strain localisation images T (r, t)

and R(r, t). For each defect i of a given type (comet, p, or trefoil, m), R(r, t)

and T (r, t) are rotated and translated into the defect-centred and defect-oriented

coordinate space rp (for comets) or rm (for trefoils). The origin of rp,i therefore

represents the core of comet defect i, while the origin of rm,i represents the core

of trefoil defect i. γp and γm are then calculated as the normalised spatial average

across all defects of a given type:

γp(rp, t) = 1
Np

Np∑
i

Rg(t)T (rp,i, t)
Rg(t)T (rp,i, t) + Tg(t)R(rp,i, t)

, (5.2a)

γm(rm, t) = 1
Nm

Nm∑
i

Rg(t)T (rm,i, t)
Rg(t)T (rm,i, t) + Tg(t)R(rm,i, t)

, (5.2b)

where Np and Nm are the total number of comet and trefoil defects respectively and

Tg(t) and Rg(t) represent the total number of active pixels in T (r, t) and R(r, t)

respectively. These global coverage factors correct for the unequal coverage of cells of

differing aspect ratio, as well as for imbalances in the numbers of the two cell types.

For example, the longer cells of the ∆pilH cell type cover a greater area than the

WT. Inclusion of Tg(t) and Rg(t) in equation 5.2 ensures that the values of γp and

γm are fixed at 0.5 far from the defect core, despite this difference in cell coverage.

To measure the relationship between system density and the enrichment of

∆pilH cells in the two defect types, a window of size 10lw was drawn around the

defect core of γp(rp, t) and γm(rm, t), and the spatially averaged value of γ measured

within the window (figure 5.5c). Consistent with a collective motility-dependent

phenomenon, comet defects in the ∆pilH/WT co-culture monolayer showed no

enrichment of either the WT or ∆pilH at low packing fractions. As ρ increased,

enrichment of ∆pilH cells increased within comets while enrichment of the WT

increased in trefoils, leading to a separation between γp and γm at high packing

fractions. Correlation between ρ and both γp and γm was significant (p < 10−10,

Pearson correlation coefficient test). This separation of cellular enrichment within
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the two defect types with increasing ρ appears to drive the density-dependent

genetic segregation described in the previous section (figure 5.4a). No significant

relationship existed between ρ and γp or γm for the control ∆pilH/∆pilH or WT/WT

monolayers (p > 0.05, Pearson correlation coefficient test), demonstrating that the

observed separation of defect enrichments in the co-culture monolayer did not result

either from an artefact of the image analysis pipeline, or from a bias introduced by

the different colours of fluorescent protein expressed by the different strains.

Some component of the correlation shown in figure 5.5c may be due to the

noisiness of defect assignment at low system densities (figure 5.5a). As system density

increases, the increased interactions between cells result in greater orientational

coherence and so improved robustness of defect localisation (figure 5.5b). This

is, however, consistent with the view that defects are the dominant structures

responsible for driving the segregation observed in figure 5.4a; it is only when

the system reaches a high enough density for coherent defects to form that the

system undergoes segregation.

Because comet and trefoil defects both possess unique spatial structures, it

was speculated that the associated cellular enrichment patterns might also display

some degree of structure. To address this possibility, separate maps of γp(rp, t) and

γm(rm, t) were generated by averaging across all low-density (0 < ρ < 0.3) and all

high-density (0.8 < ρ < 1.0) frames of the ∆pilH/WT co-culture monolayer (figure

5.5d). Consistent with the measurements of γp and γm at defect cores, the two

cell types were close to evenly mixed in the low density frames. At high densities,

enrichment patterns for both defect types were approximately radially symmetric.

5.3 The Self Propelled Rod (SPR) model repro-
duces defect-mediated segregation

In the previous sections, we have seen experimental evidence that mixtures of two

types of agent with differing morphological and/or force-generating properties unmix

at high packing fractions. This process is mediated by enrichment of different cell
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types at topological defects. Previous simulations have demonstrated unmixing

in mixtures of active and passive rods [268], but it is not immediately clear that

these results carry over to mixtures of rods with differing level of activity, as

used in our experiments. Nor was it addressed whether unmixing was associated

with topological defects, or what the role of changes in rod length might be in

driving segregation. To address these questions, a minimal physical model of the

monolayer system was implemented.

5.3.1 Motivation for modelling approach

To accurately simulate the P. aeruginosa monolayer, we require a physical model

that possesses several specific properties. Below we describe these considerations:

Wet versus dry systems: ‘Wet’ and ‘dry’ active systems differ in the presence

or absence of hydrodynamic interactions between agents. Wet systems are usually

composed of individual microswimmers in a 3D fluid. Far-field flows set up in the

medium by the propulsive motions of each of these individual swimmers results in

coupling of their motions, leading to complex collective behaviours [275]. In contrast,

the collective behaviours of dry systems emerge from the alignment of motility of

neighbouring individuals, either due to direct steric interactions between them (as

in the case of thin films of swimming bacteria [152, 163, 259] and vibrated copper

rods [162]) or behavioural factors (as in the case of animal herds [1]). Dry systems

need not be literally dry, however internally generated energy must be dissipated by

mechanisms other than viscosity. Friction, for example, can screen hydrodynamic

interactions between active elements, and increasing friction in wet two-dimensional

active systems can ultimately lead to a transition from a wet to a dry regime [276].

The subsurface monolayer of P. aeruginosa cells is confined to two dimensions by

glass below and by agar above. It seems likely that the friction exerted by both of

these surfaces will be large, and that the hydrodynamic interactions will be strongly

screened by the presence of no-slip boundaries above and below the monolayer.

These factors suggest that monolayers of twitching cells will behave like a dry system.
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Individual-based versus continuum simulations: Both continuum-based

and individual-based approaches to the simulation of dry systems have previously

been used [147, 275]. Continuum-based approaches are typically formulated

using modified versions of the classical Navier-Stokes equations [159, 276]. These

approaches ignore the behaviour of individuals and instead simulate the coarse-

grained behaviour of the collective, similar to how the dynamics of individual

molecules are neglected in continuum models of fluid dynamics. Unfortunately,

coarse-graining can make it difficult to compare the results of continuum simulations

with experimental data. For example, no direct relationship exists between the

size of the individual agents composing the active material and the spatial scale

of the flows predicted by such models. Experimentally derived parameters such

as cell aspect ratio can be indirectly adjusted by altering certain parameters of

a continuum model, but it is often unclear how these experimental parameters

map onto the parameters of the model. In addition, continuum-based simulations

typically assume a homogeneous population of agents, making it difficult to study

the behaviour of systems composed of agents with varying behaviours or properties.

Fortunately, individual-based models are able to overcome many of these

problems. Unlike wet systems, interactions between agents in dry systems are

highly localised. As long-range hydrodynamic feedbacks with the underlying fluid

do not need to be simulated, interactions can usually be simplified to direct steric

interactions between the bodies of individuals. With the dynamics of the interactions

between individuals defined, each individual can be explicitly modelled and the

properties of each defined as needed. This allows simulations of much greater

flexibility and direct biological relevance to be performed [194, 273]. The main

drawback of individual-based models is their relative computational inefficiency,

however, with the advent of multi-core processors and GPU-based parallel computing,

individual-based models are increasingly becoming the standard.

In previous sections, we have seen how the behaviour and properties of individual

cells in P. aeruginosa monolayers can be extracted using FAST. An individual-based
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approach is therefore ideal, as it allows the diversity of cell behaviours extracted

from these experiments to be directly expressed in a single simulation.

Necessary agent properties: Having settled on a dry, individual-based

simulation approach, the behavioural parameters of the agents needed to be defined.

Several additional criteria needed to be fulfilled:

• P. aeruginosa cells are rod-shaped. This leads to cell-cell alignment and the

generation of the collective behaviours discussed in the previous chapter. To

simulate these effects directly, the agents also needed to be rod-shaped. Given

the variable aspect ratio of our different strains (figure 5.1c), it would also be

useful to be able to explicitly encode this aspect ratio into each agent, rather

than implicitly through an alignment strength term.

• The interaction between cells consists of a symmetrical repulsive force between

touching cells. To simulate this we require that some form of volume exclusion

be included the simulation, a feature not present in many of the simplest

models of active matter (e.g. [158]). Furthermore, cell bodies are confined

to the monolayer, ensuring that cell bodies cannot cross. Cell-cell crossing is

permitted in some rod-based simulations (e.g. [277]), ruling these approaches

out.

• Pili-based motility propels individual cells along their principal axis. The

simulated agents should therefore impose a force on surrounding rods that is a)

directed along the long axis of the agent, and b) applied in a single direction.

This rules out some approaches that assume symmetry of the stresses acting

along the axis of the agent (e.g. [185]).

The SPR model of [200] fulfils all of these criteria: As it does not include a

hydrodynamic component, it simulates a dry system. It is inherently agent-based,

explicitly modelling each cell as a rod with selectable aspect ratio and unidirectonal

pushing force. It also explicitly models volume exclusion between cells, and with
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Figure 5.6: Illustration of variables used in the SPR model for two rods α and β.

the appropriate choice of parameters prevents cell-cell crossing. It was therefore

chosen as the basic physical model of the monolayer system, and was implemented

in Matlab. This approach is broadly similar to the model of [268], but is based on

soft (long-range) rather than hard interactions between rods.

5.3.2 Description of model dynamics

There are two core dynamical components of the SPR model. The first is a

mutual repulsion between rods. Each rod α is represented as a stiff chain of

linearly arranged Yukawa segments, defined by the quantities (xα, yα) = rα (the

centroid of the rod), θα (rod orientation, associated with an orientational unit

vector ûα), lα (distance between adjacent segments), nα (number of segments in

the rod) and λ (screening length). The aspect ratio of each rod is calculated as

aα = 1
λ
((nα − 1)lα + λ) (figure 5.6).

The location of the segment i in rod α is then given by:

(
xiα
yiα

)
=
(
xα + lα cos(θα)(i− (nα−1)

2 )
yα + lα sin(θα)(i− (nα−1)

2 )

)
. (5.3)

The interaction energy Uαβ between two rods α and β is given as the sum of the

interactions between their constitutive Yukawa segments, i.e.
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Uαβ = U0

nαnβ

nα∑
i=1

nβ∑
j=1

e− r
ij

αβ/λ

rijαβ
, (5.4)

where rijαβ = ((xiα − x
j
β)2 + (yiα − y

j
β)2) 1

2 (the Euclidean distance between segments

i and j of rods α and β, respectively) and U0 is the potential amplitude. For

notational convenience, we define r := rijαβ for subsequent sections.

In order to model the passive dynamics of this system, we need to derive the

potential gradients ∂Uα
∂xα

, ∂Uα
∂yα

and ∂Uα
∂θα

acting on each rod α. These are equivalent

to the forces/torques imposed on α by the surrounding rods. They can be derived

from equation 5.4 as:

∂Uα
∂xα

=
∑
β:β 6=α

U0

nαnβ

nα∑
i=1

nβ∑
j=1

∂r

∂xα

e
− r/λ(λ+ r)
λr2 , (5.5)

where xα is the generalised position of rod α (i.e. xα = (xα, yα, θα)), Uα =∑
β:β 6=α Uαβ, the sum of contributions to the potential from each other rod β and

β : β 6= α indicates the set of rods β that are not α itself. Given the definition of r and

equation 5.3, ∂r
∂xα

can be derived explicitly for each generalised coordinate of rod α:

∂r

∂xα
=
xiα − x

j
β

r
, (5.6a)

∂r

∂yα
=
yiα − y

j
β

r
, (5.6b)

∂r

∂θα
=

(lα(i− (nα − 1)/2))(cos(θα)(yiα − y
j
β)− sin(θα)(xiα − x

j
β))

r
. (5.6c)

The second of the dynamical components, the self-generated force, can now

be introduced. This is achieved by adding onto the repulsive force generated by

surrounding rods a constant force Fα acting along rod α’s axis. By also adding the

translational friction tensor fT and rotational friction term fθ, the final equations
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of motion for rod α are arrived at:

fT ·
∂rα
∂t

= −∂Uα
∂rα

+ Fαûα, (5.7a)

fθ
∂θα
∂t

= −∂Uα
∂θα

. (5.7b)

The frictional terms fT and fθ include geometric corrections that account for the

variable aspect ratio of the rods, as described in [200]. Explicitly, they are defined as:

fT = f0(f‖ûαûα + f⊥(I− ûαûα)), (5.8a)

fθ = f0fR, (5.8b)

where I is the 2 × 2 identity matrix and

2π
f‖

= ln aα − 0.207 + 0.980
aα
− 0.133

a2
α

, (5.9a)

4π
f⊥

= ln aα + 0.839 + 0.185
aα

+ 0.233
a2
α

, (5.9b)

πa2
α

3fR
= ln aα − 0.662 + 0.917

aα
− 0.050

a2
α

. (5.9c)

These terms are based on empirical fits of experiments that measure the

sedimentation of DNA fragments in liquid [278] and may not be the most accurate

representation of the frictional properties of surface-attached cells. In the absence

of further data detailing the nature of the frictional environment of the subsurface

colony however, and to assist in comparing simulation results directly to previous

studies, these equations were left unchanged.

The reference packing fraction ψ of the system is found by finding the total

area of all rods when modelled as spherocylinders and dividing by the total area

of the simulation domain, i.e:

ψ = 1
A

N∑
α=1

[λ(Lα − λ) + πλ2

4 ], (5.10)
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where N is the number of rods, A is the total area of the simulation domain and

Lα is the total length of rod α (Lα = (nα − 1)lα + λ).

It is important to note that ψ is not an absolute measure of the packing fraction

of the system. Interactions between rods are soft, so they are able to pack closer

together than if the screening length λ defined a solid rod edge. In principle, this

allows systems with values of ψ greater than 1 to be well-defined, a feature of this

SPR model not made explicit in its original formulation [163, 200].

5.3.3 Simulations

For different simulation tasks, the rod force F , aspect ratio a and number N were

chosen to fit the system in question. In addition, the domain size was chosen to fix

a chosen reference packing fraction ψ. These will be specified in relevant portions

of the text - here parameters that remain fixed between all simulations are defined.

Following the nondimensional approach of [163], λ = 1 for all rods. To compare the

results of simulations and experiments λ will be used as the characteristic length

scale of simulations, i.e. lw = λ. The Stokesian friction coefficient f0 (used in the

calculation of fT and fθ) = 1. U0, the potential amplitude, was set as U0 = 125. The

general dynamical behaviour has of this SPR system has previously been shown to

be only weakly dependent upon U0, provided its value is sufficiently large to prevent

rod-rod crossing [163]; it was found that a value of U0 = 125 was sufficient to

prevent this. Simulations were initialized by setting up a grid of vertically oriented

cells, with cell direction (up or down) chosen randomly on a cell by cell basis.

The dynamics of the simulations were solved using the midpoint method. The

simulation timestep τ = 0.2 was found to give numerically stable results for all

parameter values used. To ensure τ did not affect the overall outcome of the

simulations, simulations using a value of τ = 0.1 were compared to those using

τ = 0.2 with identical parameters. The resulting end-point systems had similar

statistical properties. For all simulations, the system was allowed to evolve to a

steady-state configuration before system properties were measured.
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To prevent edge effects, simulations were run with periodic boundary conditions

(PBCs). Finite size effects can affect the outcome of simulations with PBCs

[163, 279]; to check that these were not influencing the end state of the SPR

system, simulations were run with identical parameter values but varying domain

size. The reference packing fraction ψ was kept constant between simulations

by varying the number of rods within the simulation, N . Steady-state statistical

measures plateaued for N > 103.

Simulations were sped up using spatial binning to reduce the number of values

of rijαβ that had to be explicitly calculated. The simulation domain was split into

a set of boxes of a side length slightly larger than the length of the longest rod

within the simulation. A rod α could therefore only interact with rods either

within its own box, or within the 8 neighbouring boxes (the Moore neighbourhood).

Rods were distributed into these boxes based on the positions of their centroids,

and calculation of rijαβ confined to the set of rods α and β that were within each

other’s Moore neighbourhood [194].

5.3.4 Defect-centric flowfields of simulated monolayers closely
resemble experimental flowfields

This SPR model has previously been shown to reproduce the dynamics of active

turbulence [163]. Are these dynamics organised by topological defects, as in the

experimental monolayer (section 4.3.2)? To investigate this question, defect-centric

flowfields were generated based on the results of an SPR simulation with F = 1

and N = 5000. Aspect ratio a was set to 4, based on manual measurement of the

size of WT cells in monolayers. Lastly, the reference packing fraction ψ was set

to 0.25, generating a field of regularly spaced, closely-packed rods reminiscent of

the structure of the monolayer. Defect tracks were generated using the same defect

analysis pipeline as for the experimental data. To generate an image-based input

for OrientationJ, a reconstruction of the system was generated at each simulation

timepoint by plotting each rod as an ellipse. The motion of individual rods was
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Figure 5.7: Defect-centric flowfields of experimental monolayers are predicted by the
SPR model. Averaged flowfields of trefoil (upper) and comet (lower) defects in a WT
monolayer (left) are shown next to those from an SPR monolayer simulation initialised
with WT-like parameters (a = 4 and F = 1) (right). Experimental data is the same as in
figure 4.7, and is shown here for comparison. Format is largely the same as in figure 4.7,
but flowfield speeds were non-dimensionalised by dividing by the average cell/rod speed,
calculated across all the cells/rods in the experiment/simulation.

binned and averaged as for experimental data (section 4.3.2), though tracks were

obtained directly from the model output rather than from FAST.

The resulting defect-centric flowfields closely resemble experimental data (figure

5.7). As the SPR simulation is non-dimensional, direct comparison between

experiments and the simulation was facilitated by normalising the flow velocity
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at each position by the average rod/cell velocity and by rescaling the spatial

scale of each flowfield by lw. The SPR model reproduces several features of the

experimental flowfields that the analytical model was unable to account for, including

the stagnation point at the head of the comet defect, the weak counter-rotational

vortices in front of this stagnation point, and the relative speeds of the comet

and trefoil flowfields.

The close correspondence between the simulated and experimental monolayers

demonstrates that the motion of cells around defects is dominated by simple

physical interactions between cells generating an approximately constant force.

Processes involving physiological feedbacks and alteration of single-cell behaviour

do not appear to be shaping the collective behaviour of the monolayer, at least

at these temporal and spatial scales.

5.3.5 SPR simulations predict defect-mediated segregation
of mixed-force and mixed-length populations

Having established that the SPR model was able to reproduce the active nematic

properties of the monolayer, simulations were next performed to investigate the

relative roles of force and length changes in driving defect-mediated segregation.

Mixed monolayers were simulated by mixing two populations of rods. The first was

a ‘WT’ reference population with force Fr and aspect ratio ar. To investigate the

relative role of the force and aspect ratio changes observed in the ∆pilH population,

the second population (the test population) was initialised with differing values of

force Ft and aspect ratio at: A WT/WT mix was simulated with the parameter

set Fr = 1, Ft = 1, ar = 4, at = 4, while a ∆pilH/∆pilH mix was simulated with

the parameter set Fr = 1, Ft = 2, ar = 4, at = 5. Two additional simulations

investigated the respective roles of length and force-generation differences between

∆pilH and the WT in isolation, with parameter sets Fr = 1, Ft = 1, ar = 4, at = 5

and Fr = 1, Ft = 2, ar = 4, at = 4, respectively. The estimate of Ft = 2 for the

∆pilH -like rods is based on experimental measurements that show ∆pilH cells move
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approximately twice as fast as the WT (figure 5.1a,b) and the linear relationship

between propulsive force and rod velocity in the SPR model, simulating Stokes drag

[163]. Collective effects were enhanced by increasing ψ to 0.5. The two populations

were seeded at equal starting densities, with Nr = Nt = 2500.

Similar to previous studies [268], an unmixing effect was observed in the simulated

monolayers (figure 5.8a). To test if this was a defect-mediated phenomenon, γp(r, t)

and γm(r, t) were calculated for each combination of parameter values, using an

image-based output to reconstruct the strain localisation images T (r, t) and R(r, t).

This revealed two separate defect-mediated segregation processes (figure 5.8b).

The first is based on differences in rod length, as seen the case where Ft = 1 and

at = 5. At trefoil defect cores, γm(r, t) dropped below 0.5, indicating enrichment

of the (shorter) reference population at these locations. Differences in F between

the two populations resulted in a different pattern of defect enrichment: when

Ft = 2 and at = 4, the higher force test population was enriched within comets

while being slightly depleted within trefoils.

When both test population changes were incorporated (Ft = 2 and at = 5),

force-based enrichment enrichment of the test population at comets was enhanced

by the increase in rod length, while length-based and force-based enrichment

of the reference population at trefoils combined. Overall, the observed effect

was strongly reminiscent of the patterns of enrichment observed within mixed

∆pilH/WT monolayers (figure 5.5d). This suggests that the observed enrichment

effect is predominantly force-based, but is enhanced by increases in agent length.

5.4 Discussion

In this chapter, we have seen evidence for segregation of cellular populations

based on differences in force generation, as previously predicted [268]. Although

segregation has previously been observed in mixtures of epithelial cell lines with

differing levels of motility [280], the dominant contributor to segregation in this

system is differential levels of adhesion between cell lines [280, 281]. In contrast,
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Figure 5.8: Defect-mediated segregation is driven by force differences and enhanced
by length differences between populations of rods. a) Example snapshots of simulation
regions consisting of mixtures of a ‘reference’ rod population (cyan) (of aspect ratio ar = 4
and self-generated force Fr = 1) and a ‘test’ rod population (yellow) (of aspect ratio at
and self-generated force Ft, values indicated on plot). Format is as in figure 5.5a,b. b)
Normalised enrichment maps γp(r) and γm(r) for simulations shown in (a). Format is as
in figure 5.5d.
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the control experiments described in this chapter have allowed the motility-based

segregation mechanism to be effectively isolated from growth-based and adhesion-

based segregation mechanisms, demonstrating that a difference in self-generated

force between populations is by itself sufficient to drive unmixing.

The existence of a motility-based segregation mechanism is somewhat counter-

intuitive. Typically, active motility in the absence of tactic cues is thought to

enhance mixing [282, 283], and indeed many simplified ecological models that do not

explicitly model the steric interactions between agents assume that motility tends to

disperses genetic patchiness [284]. The exception to this general rule is segregation

of cells through differential taxis towards cues within the global environment [285,

286]. However, this aggregation mechanism requires that cells alter their behaviour

in response to an external gradient. In contrast, the defect-mediated segregation

mechanism described here is purely physical, and may be an inevitable phenomenon

within biofilms composed of cells with varying motility levels.

Formation of clonal patches is usually thought to drive the evolution of co-

operative behaviours through kin-selection [32, 272, 273] (section 1.1.2), and

future studies may seek to understand how the spatial heterogeneity driven by

defect-mediated segregation influences bacterial evolution. It may, for example,

promote the evolution of cooperative traits, such as sharing of secreted siderophores

with clonemates [37]. Furthermore, segregation may become ‘frozen-in’ as the

density of the system increases and motility ceases, stabilising the defect-mediated

heterogeneity. The influence of this early-stage patterning on later-stage biofilm

properties remains to be explored.

5.4.1 Mechanisms of defect-mediated segregation

Simulated mixed monolayers suggest that defects mediate two distinct mechanisms

of motility-associated cellular segregation, one based on differences in cell length

and another based on differences in self-generated force (figure 5.8). But these

observations do not tell us which physical mechanisms underlie the segregation
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process. Spontaneous segregation of active and passive populations of agents can be

induced through a mechanism similar to Motility Induced Phase Separation (MIPS)

[287] through which passive particles become compressed into raft-like structures

by the surrounding ‘sea’ of active particles [288]. However, the agents in these

simulations do not display nematic order, and the resulting segregation pattern

is not related to topological defects. In contrast, topological defects appear to

be crucial for organising the segregation of the monolayer, suggesting that MIPS

cannot be the sole mechanism responsible.

In the case of length-mediated segregation, preferential localisation of short cells

into trefoils can probably be explained by considering the relative free energies of

rods of different lengths at spatial locations around the defect. In simple terms,

longer rods will experience a greater elastic strain than shorter rods in regions of high

curvature, such as those near defect cores. Longer rods will therefore be displaced

to regions of low curvature far away from defect cores (where this elastic strain is

lower), while shorter rods will be displaced into the high-curvature regions near

to defect cores. This could result in the observed enrichment pattern near trefoils.

However, this argument would suggest that long rods should also be displaced from

regions close to comet defects, a pattern which is not observed.

The mechanism by which high-force cells become enriched in comets and low-

force cells become enriched in trefoils is less clear, although explanations for the

observation that active cells within monocultures accumulate within comets and are

depleted from trefoils may be a good starting point [173, 189, 190]. Accumulation

of cells in comets can be explained by assuming that the frictional force experienced

by elongated cells is anisotropic. This results in cells behind the defect core aligned

parallel to the defect axis becoming trapped by the cells in front of the core,

aligned perpendicular to the defect axis, driving accumulation of trapped cells

at the comet core [173]. In our system, the confining presence of a deformable

agar substrate above the cells probably results in anisotropic friction, as a greater

volume of agar must be deformed when a cell moves perpendicular to its axis than
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when moving parallel. In our SPR simulations, anisotropic friction is provided by

equation 5.8a, and anisotropic friction is also assumed in the study of [268], in which

f⊥ = 2f‖. Although this latter study did not explicitly link force-based segregation

to topological defects, the snapshots provided of their system do appear to show

enrichment of the active fraction within comet defects. It would be interesting

to repeat these simulations with f‖ = f⊥ (i.e. with isotropic friction) to see if

force-based segregation is reduced or eliminated.

Mutual exclusion of cell types is likely to be an important component of both

mechanisms. Segregation of active and passive rods at the coarse-grained level

has previously been explained in terms of cross diffusion of mutually exclusive

rod types with differing diffusion rates [268]. It is not clear that this argument

will provide insight into defect-mediated segregation, as this argument ignores the

nematic properties of the system. Nevertheless, exclusion of low-force cells by

high-force cells in comet defects could suffice to explain their enrichment in trefoils,

and exclusion of short cells from regions of low curvature by long cells may play

a role in driving their enrichment in trefoils.

5.4.2 Is the monolayer polar or nematic?

Flowfields around both comet and trefoil defects in experimental and simulated

monolayers closely resemble those predicted for extensile active nematics. This is

somewhat puzzling, as the individual cells within the monolayer are polar, i.e. lack

head-tail symmetry (section 1.3.2). Unlike classical polar systems like the Vicsek

model [158] however, the steric interaction between agents is nematic. Realignment

of pairs of cells upon contact is agnostic to their relative direction of motion, so

interacting cells with a relative angle of motion greater than 90° will increase their

relative angle of motion towards 180° (opposite to polar systems), while those with

a relative angle of motion less than 90° will decrease their relative angle of motion

towards 0° (as in polar systems). This may provide a mechanism by which nematic

ordering of the polar agents can be achieved, allowing the coarse-graining argument
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outlined in figure 1.4c to be applied. If correct, this would render the active nematic

model an appropriate continuum approximation of the system [147].

However, the data described in this chapter does not fully agree with this

viewpoint. The high-force ∆pilH mutant also forms ‘flocks’, high-density collections

of cells moving in a single direction, surrounded by lower density regions (figure 5.2a).

These closely resemble the flocks observed in polar systems, although unlike classical

models of polar active matter [158, 159] these flocks only display local polar order,

rather than global order. Similar polar flocking behaviours have been observed

in high-force SPR simulations [163, 277] and in flagellated bacteria performing

swarming motility [152], but the relationship between these ‘flocks’ and the flocks

of classical polar active matter remains poorly understood. Despite the presence of

these polar structures, ∆pilH monolayers retain characteristics of nematic systems,

including the presence of comet and trefoil defects and the overall form of the

associated defect-centric flowfields (figure 5.2b).

Given that we observe properties of both nematic and polar systems in the

monolayer, is the active nematic model an appropriate continuum approximation?

One possible resolution of this apparent quandary is that our agents are only polar

over short timescales. Directional reversals are known to be important behaviours

of the twitching motility system [20]. It is plausible that repeated forwards and

backwards movements by individual cells in the WT monolayer results in a coarse-

grained extensile stress, as appears to be the case in systems of spindle-shaped

neural precursor cells [173]. A failure of ∆pilH cells to perform reversals would

then explain the emergence of the polar-like behaviours in the ∆pilH monolayer.

However, the close match between experimental and simulated flowfields from the

explicitly polar, non-reversing SPR model suggests that reversals have minimal

impact at the timescales of our experiments.

Instead, it seems likely that our concept of ordering in active matter systems

needs to be extended. In particular, it should be noted that the distinction between

nematic and polar ordering of polar agents is not clear-cut. Instead, polarisation of
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the ordering of a coarse-grained volume element exists on a continuum, of which

the nematic and polar orderings are the extremes.

This viewpoint helps to clarify some otherwise confusing results from experiments

with active filaments. In principle, both actin/myosin and microtubule/kinesin

networks are similar systems, being composed of polar filaments and motor proteins

that move specifically towards just one of the poles of the filaments. Despite this

apparent similarity however, actin/myosin networks display polar ordering [157,

289], while microtubule/kinesin networks display nematic ordering [156]. Even more

confusingly, switching the motor protein to dynein in microtubule networks results

in polar ordering [290]. If we regard polar and nematic orderings as particular

values of this continuous ‘local ordering’ variable (rather than as distinct classes of

active matter), we can understand these transitions as changes in state resulting

from changes in the control parameters of the system. The role of the control

variables (such as agent length and force generation) in determining these state

transitions remains to be established, however.

In summary, the monolayer displays qualities of both polar and nematic matter.

Further work is needed to establish how these two classes of active matter interrelate

within the self-propelled rod framework.
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The intelligence of that creature known as a crowd is
the square root of the number of people in it.

— Terry Pratchett, Jingo

6
The crashing crowd: Collisions between
comets set an upper limit on individual

cell speed in biofilms

We have seen in the previous two chapters that a growing P. aeruginosa colony is

not simply a passively growing blob of living material. Active turbulence within the

monolayer at the colony edge drives the emergence of surprising, counter-intuitive

collective behaviours such as defect-mediated segregation. Observations of these

phenomena have been interesting for their own sake, supporting as they do many

of the models of active matter that have been developed over the last decade or so.

Nevertheless, there has been little direct evidence from this work that collective

behaviours have any biological significance for this system. This is often a problem

with studies focusing purely on the physical properties of living active matter.

Swimming collectives of E. coli for example are highly artificial systems, requiring

concentrations of swimming cells many times greater than those found in nature.

The P. aeruginosa monolayer is a more naturalistic system, forming as it does the

edge of colonies in a range of environments (section 2.5.3). But it is still not clear

how evolution shapes the collective dynamics within it.
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In this chapter I will demonstrate that these collective effects can have a profound

effect on one of the basic properties of the colony, its ability to expand. Surprisingly,

the increased speed of ∆pilH at the individual level actually causes a decrease

in the expansion rate of ∆pilH colonies. I find that this effect is driven by the

active nematic properties of ∆pilH monolayer: collisions between comet defects

results in the realignment of cells perpendicular to the plane of the monolayer,

severely hindering the expansion of the colony. In mixtures of both WT and ∆pilH

cell types, this results in the faster moving ∆pilH cell type becoming trapped in

the nutrient-poor interior of the colony, suggesting an evolutionary mechanism

for limitation of single-cell speeds.

6.1 ∆pilH colonies display a collective motility
defect

As seen in the previous chapter, the ∆pilH genotype moves more quickly at the

single-cell level than the WT (figure 5.1a,b). This immediately poses a question:

why has the WT not evolved to increase its speed to allow it to expand into new

territory more quickly? As discussed in the introduction (section 1.1.1), acquisition

of new territory is of fundamental importance to the evolutionary success of bacteria

[13, 23]. At the same time, the observation of increased speed in a mutant genotype

suggests that the twitching motility system of the WT could readily be adapted

to increase cell speed. The fact that this adaptation does not occur suggests that

there is some disconnect between the movement of individuals and the fitness of the

collective. Plausibly, the increased movement speed could lead to a metabolic fitness

cost that outweighs the benefits of faster acquisition of territory. Alternatively,

there could be an unexpected disconnect between the movement of individuals and

the expansion rate of the collective. To investigate these possibilities, the dynamics

of colony expansion in the WT and ∆pilH strains were analysed.
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6.1.1 Measurement of subsurface colony expansion

Classically, twitching motility ability has been assayed using the stab assay [20,

108, 114–116]. In this assay, a small quantity of the sample cell type is inoculated

into the interstitial space between agar and plastic/glass, and the colony size

measured following incubation. Because the size of ∆pilH colonies is known to

be smaller than those of the WT in this environment at steady state [108], it was

decided to use this assay to study the dynamics of subsurface colony expansion

to resolve the underlying mechanisms.

The subsurface colony assay is essentially a more controlled version of the

classical stab assay. The steady-state form of the expanding subsurface colony

takes the form of a travelling wave, with ‘front’, ‘monolayer’, ‘transition’ and ‘dense’

regions all spreading outwards (figure 2.1). To monitor the behaviour of colonies

beyond confluence, techniques to allow automated tracking of these regions as

the colony expands outwards were required.

Experimentally, this was achieved by imaging a number of contiguous fields of

view into which the colony expanded over the course of the experiment, with the

first field of view containing the edge of the colony at the start of the experiment.

The automated stage was used to move between these field of view, allowing an

image of the entire system at each timepoint to be reconstructed by stitching

together the images from all fields of view.

Undulations in the shape of the leading edge of the colony (e.g. figure 2.1c) are

accounted for by finding the position of the colony edge in a set of 10 strips running

parallel to the direction of expansion. Following the brightfield preprocessing steps

described in section 4.1.1, the colony edge can be distinguished as the position at

which the image transitions from cell-free (dark) to cell-containing (bright) regions.

This is found by measuring the average packing fraction ρ across the strip width,

the position of the edge within the strip being defined as the first position (moving

from the cell-free to cell-containg region) at which this packing fraction raises

above a threshold value (figure 6.1a). The whole-colony edge position, rsub is then
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Figure 6.1: Outline of the colony edge tracking process. a) Determination of the colony
edge position in a single image strip. Each trace indicates the local packing fraction (ρ)
at each position in the strip, calculated from the segmentation of the brightfield channel
image of a given timepoint t. The position of the colony edge rsub is measured relative to
its position at t = 0. Vertical lines indicate the automatically assigned value of rsub(t) for
each trace. b) Examples of ‘front’ and ‘homeland’ windows, automatically assigned as
outlined in (a).

measured as the median colony edge position from all 10 strips, relative to the

position of the edge of the colony at t = 0.

Two separate regions of interest are defined in the expanding colony: the front,

defined as the set of windows from each image strip running from the front of

the colony to 50 µm behind it, and the homeland defined as the set of windows

running from rsub = −10 µm to rsub = −60 µm at t = 0. (figure 6.1b).

6.1.2 Although ∆pilH moves faster than WT as individu-
als, it expands more slowly as a collective

To measure the impact of twitching motility on the expansion of subsurface colonies,

the position of the ‘front’ region of three separate subsurface colonies (WT, ∆pilH

and ∆pilB) inoculated on a single agar pad was tracked over 12 hours (figure

6.2a,b). All colonies displayed two phases of colony expansion: initially, expansion

speed increased exponentially. However, at an transition time ti the colony entered

a steady-state regime with a constant expansion rate ν. Expansion dynamics

of different cell types were compared by fitting a piecewise exponential to linear

expansion rate model to rsub(t) using Matlab’s fit function.

Comparison of the expansion of WT and ∆pilB colonies revealed that active

twitching motility was responsible for the majority of WT colony expansion, with
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Figure 6.2: Colony expansion assays reveal impaired collective motility in a non-motile
(∆pilB) and a hyper-motile (∆pilH ) strain. a) Colony edge position, rsub, of WT (black),
∆pilH (orange) and ∆pilB (red) colonies. rsub was measured as shown in figure 6.1a.
(inset) Magnification of first 300 s of main plot. b) Colony expansion rate, rsubdt . Traces
show first derivative of the positional data shown in (a). Solid lines and shaded areas
in (a) and (b) indicate mean ± s.d. of n = 3 biological replicates. c) Relative fitness
w of YFP labelled WT (black), ∆pilH (orange) and ∆pilB (red) test strains, measured
relative to a co-cultured CFP-labelled WT control in liquid culture. Dotted line at w = 1
indicates equal fitness of test and reference strains. Error bars indicate mean ± s.d. of
n = 3 replicates. Any difference in fitness between the test strains and the WT control
was undetectable at both timepoints (p > 0.05, one-sample t-test, n = 3).

∆pilB colonies expanding at a steady-state rate ν = 0.39 µm min−1 compared to ν =

4.1 µm min−1 for the WT. However, comparison of ∆pilH with the WT revealed an

unexpected relationship between twitching motility and colony expansion: although

the ∆pilH cell type expands more quickly than the WT initially, it is rapidly

overtaken by the WT. Despite ∆pilH colonies reaching a linear expansion regime

more rapidly than the WT (ti = 237 min compared to ti = 447 min for the

WT), the associated linear expansion rate is slower than for the WT (ν = 1.2

µm min−1 compared to ν = 4.1 µm min−1). These results suggested that single-

cell motility patterns do not directly translate into collective motility patterns,

and call into question the widespread use of the stab assay for measuring the
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functionality of twitching motility.

One possible explanation for this apparent disconnect between individual and

collective behaviours is slower growth of ∆pilH relative to the WT. A reduced growth

rate of the ∆pilB could also at least partially explain its extremely slow expansion

rate. As growth of cells on surfaces is inherently dependent upon their ability to

expand into new territory, surface-based growth rate assays were confounded by

the impact of the twitching system mutations upon colony expansion ability. To

remove this as a factor, growth rates were estimated in shaken liquid cultures. For

each of the WT, ∆pilH and ∆pilB cell types, a YFP-labelled test strain was mixed

with a CFP-labelled WT reference strain. The relative fitness w of each cell type

was estimated by measuring the number of colony forming units (CFUs) at two

sampling times, t = 3.5 hours and t = 7 hours. w is calculated as:

w = ln(CT (t)/CT (0)
ln(CR(t)/CR(t)) , (6.1)

where Cx(t) is the estimated total number of CFUs of strain x at time t, and the

subscripts T,R indicate the test or reference strain, respectively.

This growth rate analysis showed no difference in the growth rate of any of the

test strains at either of the sampling times, with w ≈ 1 for all samples (figure 6.2b)

(p > 0.05, one-sample t-test, n = 3). It was therefore concluded that growth rate was

not playing a substantial role in the observed changes in colony expansion dynamics

in the two mutants. 1. A second alternative hypothesis, that greater adhesiveness

of ∆pilH cells caused by hyperpiliation retards their collective expansion, was

discounted in the previous chapter (figure 5.4b).

1CFU-based analyses such as this one provide direct information about cell number, rather
than total biomass. This is an important distinction to make, as the ∆pilH cell type is ≈ 25%
longer than the WT (figure 5.1c). However, as the results presented here suggest that the time
between cell divisions is equal between the two strains, they also imply that the doubling times of
their total biomasses are also equal.
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6.2 Differences in colony expansion rate cause
differences in strain fitness

Based on this extreme difference between colony expansion rates in the two genotypes

and the value of acquiring new territory, it was hypothesised that the ∆pilH genotype

would be severely impaired in its ability to compete with the WT in the subsurface

and surficial colony environments. To test this hypotheses, the two strains were

competed in both the surficial and the subsurficial environments.

Direct competition experiments were initiated in surficial colonies by initiating

colonies with 1:1 cocultures of WT-CFP/WT-YFP, WT-CFP/∆pilH -YFP, ∆pilH -

CFP/WT-YFP and ∆pilH -CFP/∆pilH -YFP. Following incubation for 48 hours

at room temperature, colonies were imaged in the brightfield and YFP channels

(figure 6.3a). While the WT-YFP/WT-CFP and ∆pilH -YFP/∆pilH -CFP controls

showed an even number of each strain at all locations in the colony, the WT

clearly dominated the mixed genotype colonies. Not only was the colony edge

beyond the initial inoculation site composed almost exclusively of the WT, the

proportion of cells in the homeland also appeared to be skewed towards the WT

based on comparison to the controls. These results were quantitatively confirmed

by scraping entire colonies off the agar surface and estimating cell counts in each

by counting the CFUs of each cell type. These were then compared to the number

of cells used to initiate the colonies, which was also measured by counting CFUs.

This allowed the number of cell divisions for each cell type occurring between

inoculation and scraping to be estimated as:

# divisions = log2( # cells in colony
# cells in inoculum). (6.2)

This revealed that the relative growth of ∆pilH is indeed substantially impacted

when grown with the WT (figure 6.3b). Not only did the ∆pilH cell type undergo

≈2.5 fewer cell divisions relative to the WT in the mixed co-cultures, it also

underwent ≈1.5 fewer cell divisions compared to colonies solely composed of ∆pilH .
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6.2. Differences in colony expansion rate cause differences in strain fitness

Figure 6.3: Competition assays in surficial and subsurficial colonies reveal the cost of
the ∆pilH mutation. a) Images of edges of 48 hour old surficial colonies initiated with
1:1 CFP:YFP labelled cells in the indicated combinations. Due to native siderophore
production, CFP could not be imaged (see section 2.2.2). Images are therefore composites
of brightfield and YFP channels. Purple dotted line indicates extent of initial inoculation.
b) Estimated number of cell divisions between inoculation and sampling of colonies shown
in (a). Error bars indicate mean ± s.d. for n = 4 replicates. c) Position of subsurficial
colony edge relative to position at experiment start for a subsurficial ∆pilH -YFP/WT-
CFP co-culture. Line and shaded region indicates mean ± s.d. for n = 3 replicates for
(c)-(e). Orange and black dotted lines indicate best fit of a two-part piecewise linear
function to mean positional data. d) Areal packing fraction of homeland (purple) and front
(green) regions of ∆pilH -YFP/WT-CFP co-culture. e) Estimated ratio of ∆pilH to total
cell population in ∆pilH -YFP/WT-CFP co-culture. Format as in (d). f) Representative
images of leading edge of co-culture colony used in (c)-(e). Images were processed using
the pipeline described in section 5.2.2.
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This suggests that the WT is not only able to expand into new territory more

effectively than ∆pilH , but also that it is able to more effectively consolidate

territory within the initial inoculation zone.

To observe this competition process in greater detail, ∆pilH -YFP and WT-CFP

were mixed 1:1 in subsurface colonies (figure 6.3c-f). Using the edge tracking and

strain localisation pipelines (sections 6.1.1 and 5.2.2), the edge position rsub (figure

6.3c), packing fraction ρ (figure 6.3d) and ∆pilH to total cell ratio (figure 6.3e)

were dynamically measured over the course of the experiment. Over the first 200

minutes, the front region gradually became more enriched in the ∆pilH cell type,

indicating that its greater speed relative to the WT did indeed improve its ability

to expand into new territory at early stages. The homeland region also gradually

increased in density, reaching confluence at ≈200 mins. As the strain localisation

method described in section 5.2.2 ceases to be effective once the colony transitions

to three dimensions, monitoring of the composition of the homeland was terminated

at this point. In all three measures, a clear transition was noted at 300 minutes

in the front region. Between 200 minutes and 400 minutes, the expansion rate

accelerated from 0.75 µm min−1 to 5.0 µm min−1, ρ increased from 0.33 to 0.85

while the strain ratio collapsed from 0.88 to 0.11. Transitions in strain composition

and ρ were also clearly visible in the original images of the front (figure 6.3f),

demonstrating that the transition was associated with a) invasion of the originally

∆pilH dominated leading edge by the faster expanding WT, and b) an increase

in the packing fraction of the leading edge.

Based on these observations, it was speculated that the observed population

dynamics of the subsurface colony resulted from a defect in the collective motility

of ∆pilH at high packing fractions. However, despite the finding that both cell

types grew equally well in liquid culture (figure 6.2c), it was not possible to rule

out the existence of an environment-specific growth defect for the ∆pilH cell type.

Growth on surfaces is known to be associated with a number of processes, including
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upregulation of TFP and downregulation of flagella [106, 291]. Plausibly, the ∆pilH

mutant could be subject to a growth defect only in surface-associated environments.

As noted in section 6.1.2, the relative growth rates of strains with differing

motilities is difficult to measure using expanding, surface-associated colonies, as

differential growth rates become confounded with the differential ability of the two

strains to access new territory and resources. However, the homeland region is fully

occupied by a mixture of both cell types from the beginning of the experiment.

Consequently, both strains have equal access to the territory and nutrients within

this region. If analysis of the growth rates of the two strains can be isolated to this

region, the differential mobility of the two strains in the subsurface environment

can be discounted as a confounding variable.

To achieve this, the ratio of the two strains was monitored within the homeland

(figure 6.3e). If this ratio were to remain stable over the course of the experiment,

this would indicate equal growth rate of the two strains. However, a gradual decrease

in this ratio over time was observed, suggesting that the WT grows slightly faster

than ∆pilH in this environment. It was therefore necessary to establish if the

extent of this surface-specific growth defect could explain the observed population

dynamics of the ∆pilH/WT colony.

6.2.1 A surface-specific ∆pilH growth defect cannot ac-
count for subsurface population dynamics

To assess the extent of this growth defect, a model of competitive cellular growth

was fitted to the strain ratio data. Let the ratio of the ∆pilH cell type to the total

cell population at time t be denoted by κ(t). Assuming exponential growth of the

∆pilH and WT populations at rates µH and µW , respectively, we can write κ(t) as:

κ(t) = Ht0e
µH(t−t0)

Ht0e
µH(t−t0) +Wt0e

µW (t−t0) , (6.3)

where Ht0 and Wt0 are the densities of the ∆pilH and WT populations, respectively,

at the starting time t0. By finding the experimentally measured value of this
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function at t0 and a sample time tR, the growth rate of the ∆pilH mutant can then

be found in terms of the growth rate of the WT cell type:

µH = 1
(tR − t0) ln

(
κ(tR)(1− κ(t0))
κ(t0)(1− κ(tR))2(tR−t0)/t2

)
, (6.4)

where t2 is the doubling time of the WT, where µW = ln(2)
t2

. t2 was estimated from

liquid culture experiments (figure 6.2c) as t2 ≈50 minutes, so µW ≈0.014 min−1.

This is a conservative estimate, as the doubling time in the subsurface environment

is likely to be longer than in liquid culture due to localised oxygen and nutrient

depletion. Taking t0 = 0 minutes and tR = 200 minutes (the time of confluence in

the homeland), µH can be estimated as 0.011 min−1, corresponding to a doubling

time of 63 minutes. This is likely to be an overestimate of doubling time, as at least

part of the drop in κ(t) at early times will be driven by preferential segregation of

∆pilH into the leading edge. Nevertheless, this provides a conservative estimate

of the growth rate of the ∆pilH cell type in the subsurface colony.

Is this growth rate difference as measured in the homeland sufficient to explain

the collapse in the ∆pilH population at the front of the colony? To test this, the

above analysis was repeated for κ(t) within the front region. In performing this

analysis, an implicit assumption is made that the two strains remain well-mixed,

i.e. that both migrate outwards at equal speeds. Any change in κ(t) is therefore

driven solely by differences in the growth rates of the two cell types. t0 was taken

to be the time at which κ(t) at the front reached its peak (t0 = 200 minutes) and

tR to be the time 200 minutes after this time, as for the analysis of the homeland

(tR = 400 minutes). Keeping t2 = 50 minutes, a value of µH = −0.007 min−1

was obtained. Not only is this value substantially lower than the value of µH
obtained within the homeland, it is negative, implying that the ∆pilH population

is actively decreasing (rather than simply being diluted by the faster growing WT).

Preferential death and lysis of the ∆pilH cell type is one possible mechanism by

which this negative growth rate could appear, but as this effect was not observed

in the homeland (where µH was positive) it was unlikely to be present within the
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Figure 6.4: Properties of comet and trefoil defects differ between WT and ∆pilH
monolayers. a) Variation in density of comet (red) and trefoil (blue) defects in a ∆pilH
(dashed lines) and WT (solid lines) monolayer. b) Normalised cross-correlation of comet
and trefoil densities shown in (a), calculated separately for ∆pilH (orange) and WT
(black) monolayers. c) RMSDs of tracked WT (black lines) and ∆pilH (orange lines)
comet (red circles) and trefoil (blue triangles) defects. d) Data shown in (c), plotted on
log-log axes. Triangles indicating ballistic (1-1) and diffusive (1-2) scalings are also shown.

front. Instead, it appears that the collapse in the ∆pilH population at the front

at 300 minutes is driven by a mechanism that preferentially inhibits their outward

migration once the front becomes confluent.

6.3 Expansion of ∆pilH colonies is impeded by
rosette formation

6.3.1 Topological defects behave differently between WT
and ∆pilH monolayers

We saw in the previous two chapters that the monolayer is well described by the

theory of active nematics. Can this provide insight into the mechanisms driving

the apparent contradiction between individual and collective behaviours? To begin,
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several differences between the characteristics of ∆pilH and WT defects were noted

that might provide clues to the mechanisms involved (figure 6.4). Firstly, although

the ∆pilH comet and trefoil defect flowfields have a broadly similar form to those

of the WT, they are substantially larger in scale (figure 5.7a). This is reflected

in the density of defects in ∆pilH monolayers: although in both WT and ∆pilH

monolayers the density of the two defect types remains in balance (reflecting the

requirement that the net topological charge of the system remain zero), the density

of defects in the WT monolayer is, on average, 79% higher than in the ∆pilH

monolayer (figure 6.4a). Cross-correlation analysis of defect density data displayed

a distinct peak at 0 minutes, indicating that the overall topological charge of

both systems was conserved (figure 6.4b). This reproduces predictions from both

numerical simulations [292] and theory [177].

Difference in the movements of defects between the two monolayers can also be

observed. Calculation of the RMSD
√
M (equation 1.2) of the two defect types in

the two monolayers revealed that, while trefoil defects of the two monolayers have

similar motilities, the comet defects of the ∆pilH monolayer move at substantially

higher speeds than those of the WT monolayer (figure 6.4c). Plotting of the RMSD

on log-log axes revealed that both WT and ∆pilH trefoils possessed sub-diffusive

motion (slope between 0.5 and 1 min = 0.38 and 0.45, respectively), WT comets

were approximately diffusive (slope = 0.50) and ∆pilH comets showed a more

ballistic motion (slope = 0.80). Similar defect movements have been demonstrated

in numerical SPR simulations [292]. These behaviours support active nematic theory,

which predicts that, in the high activity limit, the movement of comet defects will

be ballistic and proportional to the activity of the nematic, while trefoil defects will

be randomly buffeted by elastic interactions with surrounding comets [179, 180].

The reason for this can intuitively be seen by considering the structure of the two

defect types: a trefoil possesses threefold rotational symmetry, while comet defects

lack rotational symmetry. Any effective force generated by cells in the tail of the
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comet defect will therefore be unbalanced, leading to the net migration of the comet

in the head direction at a speed proportional to the force generated by those cells.

Taken together, these results suggest that the comet defects of ∆pilH monolayers

are both larger and higher velocity than those of the WT. Interestingly, previous

theoretical work suggests that increasing the activity of a nematic in this way

should allow comet defects to overcome the elastic energy barrier between them,

driving their fusion into a +1 defect [177, 293]. A necessary requirement of this

process is that the 2D nematic should realign vertically at the fusion site, in a

process known as ‘escape to the third dimension’ [293]. Remarkably, this prediction

is not only borne out by our results, but it also appears to drive the disconnect

between individual and collective behaviours.

6.3.2 Collisions of ∆pilH comet defects drive escape to the
third dimension at the collision point

Imaging the dynamics of mixed WT/∆pilH monolayers revealed the emergence

of clear comet defects composed largely of ∆pilH cells, with enrichment of the

∆pilH being driven by defect-mediated segregation. These low-magnification images

revealed that upon reaching confluence, stable accumulations of ∆pilH cells formed

at sites in the monolayer where comet defects collided. We called these structures

‘rosettes’. The formation of such static accumulations of a single cell type could

lead to its preferential exclusion from the leading edge of the colony, exactly the

behaviour observed in expanding surficial and subsurficial colonies.

Moving to higher spatial and temporal imaging resolutions, instances of collisions

between two comet defects were captured (figure 6.5a). In order to avoid the negative

effects of phototoxicity and bleaching from imaging in the fluorescence channels at

these high resolutions, the dynamics of rosette formation were imaged purely in the

brightfield channel. PIV was then applied to the resulting image series using PIVlab

[251]. By averaging the resulting frame-frame displacement vectors across the 60

minutes of imaging data, the flowfield associated with the formation of rosettes within
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Figure 6.5: Collision of comet defects drives formation of rosettes. a) Pre-rosette in a
WT/∆pilH co-culture monolayer. b) Temporally-averaged PIV flowfield u of co-culture
monolayer undergoing rosette formation. Colour indicates divergence ∇ · u at each point
in flowfield. Time of averaging = 60 mins. Main panel shows flowfield for entire field
of view, with stars indicating locations of rosette formation. Zoomed inset shows the
region corresponding to the field of view used in (a) and (c). c) Confocal image of rosette
60 minutes after (a). WT cells cyan, ∆pilH yellow. Red lines and arrowheads indicate
locations of orthogonal imaging planes shown as insets. Purple square indicates location
of zoomed cross section of rosette core. Main panel shows maximal z-projection in both
channels, while insets show individual slices through the 3D structure.

the field of view was reconstructed (figure 6.5b). This revealed the collapse and

twisting of the monolayer at the site of defect collision, with the inward collapse of

cells clearly indicated by the negative divergence of the flowfield at the collision site.

Quickly switching to confocal microscopy, the three-dimensional structure of

one rosette at the end of this imaging period was then captured (figure 6.5c).

Several differences in the organisation of the ∆pilH and WT cells within this

rosette were noted: 1) ∆pilH cells were concentrated at the centre of the rosette,
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with WT cells spread around the outside. The occasional WT cell could be seen

within the rosette core. 2) The ∆pilH cells within the rosette core were oriented

perpendicular to the plane of the monolayer and were packed into a hexagonal

crystalline array. WT cells co-localised to this region adopted a similar configuration.

In contrast, cells of both cell types remained confined to the monolayer outside of

this core region. 3) Cells at the edge of the rosette core adopted an orientation

between fully vertical and fully horizontal, possibly representing a transitional

stage between the two orientation domains.

6.4 3D SPR models reproduce preferential verti-
calisation of high-force rods

The existence of rosettes demonstrates that processes occur in mixed WT/∆pilH

co-cultures that are inherently 3D. Unfortunately, the SPR model described in the

previous chapter is confined to two dimensions, preventing its use in investigating the

emergence of these verticalisation behaviours. Nevertheless, many questions can be

asked that can only be investigated through modelling. Can cellular verticalisation

and rosette formation be understood purely in terms of self-generated forces? What

is the role of comet defects in verticalisation? What is the relative impact of the

differences in force generation and length between the WT and ∆pilH? And why

are ∆pilH cells preferentially trapped within rosettes? To begin to answer these

questions, the originally 2D SPR model was expanded into the third dimension.

6.4.1 Expanding the SPR model to three dimensions

In two dimensions, a rod’s position and orientation are defined by the quantities

(xα, yα) and (θα). In three dimensions, we must add the position of the rod’s

centroid in the z-axis zα and the angle made by the rod’s long axis with the xy-plane

φα. This value, φα, will be referred to as the tilt of the rod. The coordinates

of the segment i are then given by:

168



6. The crashing crowd: Collisions between comets set an upper limit on individual
cell speed in biofilms

x
i
α

yiα
ziα

 =


xα + lα cos(θα) cos(φα)(i− (nα−1)

2 )
yα + lα sin(θα) cos(φα)(i− (nα−1)

2 )
zα + lα sin(φα)(i− (nα−1)

2 )

 . (6.5)

This update of the definition of segment position using zα and φα requires that

we also update the definition of the rate of change of segment separation with

respect to each generalised rod coordinate:

∂r

∂xα
= 1
r

(xiα − x
j
β), (6.6a)

∂r

∂yα
= 1
r

(yiα − y
j
β), (6.6b)

∂r

∂zα
= 1
r

(ziα − z
j
β), (6.6c)

∂r

∂θα
= 1
r

(lα(i− (nα − 1)/2) cos(φα)(cos(θα)(yiα − y
j
β)− sin(θα)(xiα − x

j
β))), (6.6d)

∂r

∂φα
= 1
r

(lα(i− (nα − 1)/2)(cos(φα)(ziα − z
j
β)

− cos(θα) sin(φα)(xiα − x
j
β)− sin(θα) sin(φα)(yiα − y

j
β))), (6.6e)

where r is the Euclidean distance between segments i and j of rods α and β,

respectively. The first two equations of motion remain largely unchanged from

those defined in chapter 5:

fT ·
∂rα
∂t

= −∂Uα
∂rα

+ Fαûα, (6.7a)

fθ
∂θα
∂t

= −∂Uα
∂θα

. (6.7b)

However, rα now includes zα, and ûα is defined in terms of both φα and θα. In

addition, the translational friction tensor is redefined as:

fT = f0(f‖ûαûα + f⊥(I− ûαûα)), (6.8)

where I is now the 3×3 identity matrix and ûα is the three-dimensional orientational

unit vector for rod α.
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We next need to define an equation of motion for φα to determine the dynamics

of tilting of rods out of the plane. It is important to note that the system we

are attempting to model is not isotropic; reorientation out of the xy-plane is

opposed by the presence of the agar pad (in the case of subsurficial colonies) or

EPS/surface tension in the thin fluid film covering the top surface of the agar (in

the case of surficial colonies). This provides a restoring force that is not present for

reorientations within the plane (i.e. changes in θα). To simulate this restoring force,

note that both agar and EPS have viscoelastic properties when deformed at length

scales similar to those of a single cell, and that the elastic responses at these length

scales are approximately Hookean [294, 295]. By assuming that ∂Uα
∂φα

represents a

torque applied at the rod centroid and that, by Hooke’s law, the restoring force

will be equal to the displacement of the surrounding substrate multiplied by the

substrate elasticity k, the equation of motion for φα can be written as:

fφ
dφα
dt

= −∂Uα
∂φα

+ kl2α
2 sin(φα) cos(φα). (6.9)

Due to the lack of empirical data regarding the physical properties of this experi-

mental system, we assume that the rotational friction terms fφ and fθ are equal.

We therefore arrive at a model with just one new free parameter, the elasticity of

the substrate k. This is set at k = 0.6, chosen such that the ensuing verticalisation

dynamics of interest take place between 1 < Fα < 2. Similar behaviours occur at

other values of k, but with responses shifted to different values of Fα.

This set of equations defines the motion of rods for a fully 3D system, with

rods able to move in all three dimensions. In order to maintain the system as a

monolayer however, motion within the z-direction is set as ∂zα
∂t

= 0. This allows

rods to tilt out of the plane of the monolayer but not move their centroids out of

it. Effectively, this means that Fα is rescaled by cos(φα).

170



6. The crashing crowd: Collisions between comets set an upper limit on individual
cell speed in biofilms

Figure 6.6: Quasi-3D SPR modelling implies the existence of a force threshold for
effective collective movement. a) Average rod speed over time for three example monolayer
simulations. b) End state configuration of simulated monolayers shown in (a). c) Average
rod speed at steady-state (black) and proportion of fully tilted rods (φ > 85 deg) at steady-
state (grey) as a function of applied rod force, F . The verticalisation force threshold Fv
is defined as the force corresponding to peak rod speed. Force values corresponding to
simulations shown in (a) are indicated by arrows with corresponding colours. Lines and
error bars indicate mean ± s.d. for n = 3 randomly initialized simulations.

6.4.2 Force-dependent crystallisation of monolayers

With the above modifications to the dynamics of the SPR model made, simulations

were performed to investigate how verticalisation effects influenced the behaviour

of the monolayer. These were initialised in a similar way as for the 2D simulations

(section 5.3.3), with N = 1600, a = 4 and ψ = 0.25. In contrast to the purely

2D model however, a small amount of noise was added to the initial tilt of each

rod φα. This perturbation ensured that φα was not constrained to 0 by equation

6.9. Following initialisation, the dynamics of the system were simulated for 300
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time units with dφα
dt

= 0. This suppression of tilting allowed the system to enter

a steady-state 2D configuration. Quasi-3D dynamics were then simulated for all

subsequent timesteps by simulating the dynamics of φα through equation 6.9. The

time at which quasi-3D dynamics were activated was defined as t = 0.

As the most substantial difference between the WT and ∆pilH cell types

appeared to be their level of force generation, simulations were run across a range

of values of F . At low force values (F = 0.5), average rod velocity remained near

constant over the entire simulation. Increasing F to an intermediate value (F = 1.5)

caused an increase in mean rod speed. As individual rod speed is proportional

to F [163], this was anticipated. However, although increasing F to higher levels

(F = 3) led to faster average rod movement at early times, this average speed

rapidly decreased so that it was below the level observed for intermediate values

of F at steady state (figure 6.6a).

Reconstructions of simulations at their end points (figure 6.6b) revealed the

primary cause of this behaviour. At low forces (F = 0.5), the monolayer is

effectively confined to the 2D plane. However, as F is increased to intermediate

values (F = 1.5), verticalised patches of hexagonally-packed rods begin to form that

are unable to move within the plane. As F is increased further, these patches increase

in size until they are the dominant structures in the simulation domain (F = 3).

To understand this ‘crystallisation’ process of the simulated monolayer, we

can turn to equation 6.9. It contains two competing terms: a torque applied

by surrounding rods −∂Uα
∂φα

that tends to increase φα, and a torque applied by a

restoring force from the substrate kl2α
2 sin(φα) cos(φα) that tends to decrease φα. An

important property of this restoring force term is that it implies the existence of

two stationary points in equation 6.9 for 0 ≤ φα ≤ 90° when the applied torque
∂Uα
∂φα

= 0: 1) a stable stationary point when the rod is lying down (φα = 0) and the

substrate is not displaced, and 2) an unstable stationary point when the rod is fully

vertical (φα = 90°) and the substrate is unable to exert a net torque on it. This

second stationary point effectively stabilizes verticalised regions of the monolayer.
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In the simulations shown in figure 6.6, rods are initialised at φα close to 0°.

In order to tilt upwards and form stable verticalised patches, each rod must

first be subjected to a sustained torque from surrounding rods greater than the

opposing torque originating from the restoring force. This argument suggests the

existence of a verticalisation force threshold Fv above which rods will begin to form

stable verticalised patches. At forces below this value, the torque applied by the

surrounding rods will be insufficient to overcome the restoring force, preventing

rods from fully standing up and becoming stabilised by the stationary point at

φα = 90°. The existence of Fv can clearly be seen in the full sweep over F (figure

6.6c): beyond a critical value (F = 1.5 = Fv), stable vertical patches begin to form.

Further increases in F beyond Fv increase the extent of the crystalline verticalised

domains and further decrease the average rod speed. This process is similar to the

‘freezing by heating’ effect observed in simulations of pedestrian dynamics [296].

6.4.3 Simulated co-culture monolayers recapitulate ∆pilH
enriched rosette formation

Is this process of verticalisation ‘seeding’ linked to comet collisions, as observed in

the experiments (figure 6.5a)? To investigate this question, simulations consisting

of comet defects pointing towards each other were set up using an externally defined

orientation field. Simulations were initialised by using a 12× 12 grid of rods, with

their starting value of θα selected from this underlying orientation field. ψ was

set to 0.25, as for the randomised simulations (section 6.4.2). Identical copies of

this initialised system were then simulated using two separate force values - one

below Fv (F = 1) and one above Fv (F = 3) (figure 6.7a).

These simulations demonstrated that collision of comets could indeed lead to the

formation of a stable verticalised region, provided F > Fv. This is partially because

sites of collision between comets represent the locations where the directions of

single-rod force generation are the most directly opposed, leading to the highest

values of externally applied torque −∂Uα
∂φα

. However, once the comet defects have

173



6.4. 3D SPR models reproduce preferential verticalisation of high-force rods

Figure 6.7: Rosette formation and rod verticalisation preferentially trap high-force rods.
a) Simulated collisions of comet defects in monolayers composed of rods of a single value
of F . For low force values (F = 1), the restoring force of equation 6.9 is sufficient to
maintain the system’s 2D geometry. For force values above the verticalisation threshold
Fv however (F = 3), stable rosettes are generated. b) Rosette spontaneously formed
within a co-culture monolayer simulation, consisting of a reference ‘WT’ population of
rods at Fr = Fv = 1.5 (cyan, corresponding to the WT) and a test ‘mutant’ population
with Ft = 3 (yellow, corresponding to the ∆pilH cell type). c) Force sweep over the
’mutant’ population in co-culture monolayer simulations with Fr = Fv = 1.5. The ratio of
average ‘mutant’ to ‘WT’ rod speed at steady-state is plotted in grey, while the proportion
of verticalised rods (φα > 85°) is plotted for both the ‘WT’ (cyan) and ‘mutant’ (yellow)
populations.

come close enough to each other to merge into a +1 aster, verticalisation would still

be expected even if activity were turned off. +1 defects are energetically disfavoured

in 3D nematic systems, because an ‘escaped’ configuration in which the nematic

is reoriented perpendicular to the 2D plane of the +1 defect is associated with a

lower elastic energy [293]. This is simply because, in the escaped configuration,

there is no defect - the orientation field varies smoothly throughout the resulting

three dimensional structure [177]. As a result, the high curvatures close to defect
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cores no longer exist, and the free energy of the system is reduced. Comet and

trefoil defects on the other hand are associated with half-integer topological charges,

and as such are resistant to this escape mechanism [177].

Although these monoculture simulations demonstrate that verticalisation can,

in principle, be driven by excess force generation and collisions between comet

defects, they do not immediately demonstrate that mixtures of different cell types

will show the strain-specific verticalisation observed in experimental rosettes (figure

6.5c). Plausibly, the process of forming patches of verticalised high-force rods

could be equally efficient at trapping both rod types. To test this idea directly,

a similar approach to that used in the previous chapter was applied. Co-culture

simulations consisting of a ‘WT’ reference population with an optimised level of

force generation, Fr = Fv = 1.5, and a ‘mutant’ test population with variable

force, Ft, were initiated with a = 4, ψ = 0.25 and Nr = Nt = 800. The impact of

different mutations of force generation in the ‘mutant’ population was investigated

by systematically varying Ft between 0 and 3.

Beginning with the value of Ft thought to most closely resemble that of the

∆pilH mutant, Ft = 2Fv = 3, several encouraging features were noted. Not

only did rosettes form, they were primarily composed of the ‘mutant’ population,

corresponding to the experimental observations. In addition, rods around the rim

of the verticalised patch possessed intermediate values of φα, also a feature of

experimental rosettes (figure 6.7b). Looking more broadly at the effect of changing

the force of the ‘mutant’ population, a force sweep over Ft revealed that increases in

Ft above Fv led to preferential verticalisation of the ‘mutant’ population. Because of

this effect, the ‘mutant’ population was unable to gain any overall speed advantage

over the ‘WT’ population (figure 6.7c). Assuming the average cell speed is related

to the rate of expansion of the colony, this mechanism will make the real WT

population resistant to invasion from either decreased or increased force-generation

mutants in this environment.
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6.4.4 Increases in the length of high-force rods inhibit their
verticalisation, but enhance their enrichment in rosettes

As noted in the previous chapter, changes in cellular aspect ratio can have profound

effects on the behaviours of bacterial populations in biofilms. Because the ∆pilH cell

type is longer than the WT (figure 5.1c), the relative impact of the increase in aspect

ratio versus the increase in force generation in the mutant was investigated in silico.

To provide an intuition for the interplay between length and verticalisation

tendency, monocultures were simulated with N = 1600 and ψ = 0.25, and with

variable a and F (figure 6.8a,b). Because the interactions between rods are soft,
∂Uα
∂φα

is non-zero even in the absence of motility, leading to a non-trivial relationship

between a and Fv. Nevertheless, there is a clear shift in the peak rod velocity with

longer rods. This can be understood simply in terms of the dependence of the

restoring force term in equation 6.9 on l2α. Intuitively, longer rods will displace the

surrounding substrate to a greater extent during reorientation, tending to increase

the elastic restoring force acting upon them. Importantly, this effect suggests that

longer cells should be less prone to verticalisation. If the increase in ∆pilH cell

length has any effect on rosette formation, it is to suppress it. As this is the

opposite to what is observed in the experimental data, it is apparent that the

increase in force generation in the mutant is the dominant driver of verticalisation.

A similar dependence between a and Fv has previously been noted in biofilms

undergoing verticalisation by growth [297], although in that case verticalisation

was resisted by the energy required to ‘unpeel’ cells from the horizontal surface

on which they were growing.

Next, co-cultures were simulated using a similar approach to that described in

the previous chapter (section 5.3.5). In short, co-culture simulations were performed

in which the ‘mutant’ population’s aspect ratio (at) and force (Ft) were varied

separately and together. For these simulations Nr = Nt = 800, ψ = 0.25, ar = 4,

Fr = Fv = 1.5 (where Fr is the verticalisation threshold for the reference ‘WT’

population with a = 4) and at = 5. Again, a force sweep was performed over the
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Figure 6.8: An increase in ‘mutant’ rod length inhibits their verticalisation but enhances
their enrichment in rosettes. a,b) Effect of varying rod aspect ratio a on average rod
speed (a) and verticalisation (b) in simulated monolayers at steady state. c) Co-culture
force sweep over the ‘mutant’ population force Ft with ‘WT’ population parameters
Fr = Fv = 1.5, ar = 4 and ‘mutant’ aspect ratio at = 5. Format as in figure 6.7c. d)
Rosette spontaneously formed in co-culture simulation with Fr = Fv = 1.5, ar = 4, Ft = 5
and at = 5. Format as in figure 6.7b.

‘mutant’ population (figure 6.8c). As anticipated from the monoculture simulations,

increasing the length of the ‘mutant’ population enhanced their ability to remain

confined to the plane as Ft increased, allowing them to reach average speeds greater

than those of the ‘WT’ population. This suggests that increases in single-cell speed

can increase average cell speed, provided cell length is also increased so that Fv

is shifted to higher values. It is tempting to speculate that the increase in cell

length observed in ∆pilH is adaptive, with some as-yet unknown morphological

control system being employed in an attempt to overcome the increased tendency
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of these cells to undergo verticalisation.

Nevertheless, this mechanism cannot protect the ‘mutant’ population from

unlimited increases in force generation. Further increases in Ft led to preferential

verticalisation of the ‘mutant’ population, as in equal-length simulations. Rosettes

continued to be formed within these high-force simulations (figure 6.8d), but the

degree of enrichment of the longer ‘mutant’ population within them was greater

than in equal-length simulations. This is consistent with the extreme level of

enrichment of ∆pilH within experimental rosettes (figure 6.5c). The mechanism

behind this length-dependent enrichment enhancement is currently unclear, although

it may involve the greater nematic alignment of longer rods with each other within

the verticalised patches.

6.5 Discussion

6.5.1 Evolution of collective motility in biofilms

Crowd-based motility is an example of the conflict between the interests of the

individual and the group. Each individual attempts to move in a manner that

maximises their own utility (by reaching a target destination as quickly as possible,

for example), yet the collective effect of this behaviour when applied by all individuals

in the group can be deleterious to the group as a whole. Examples of these effects

abound in human movements. For example, a panicked crowd attempting to escape

a space through a narrow aperture will enter a jammed state, reducing the efficiency

of egress for the entire group and potentially leading to injuries if the individual

drive to exit is great enough [298, 299]. Aggressive and egocentric behaviours can

also disrupt traffic flows, reducing the overall flow rate of the system through the

formation of jams [148, 300, 301], while selfish route choices in congested road

networks can reduce the overall efficiency of traffic flow through the network [302].

Related effects have also been demonstrated in non-human systems [149, 150]. In

general, these types of effects can be classed under the heading of the ‘slower-is-faster’
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(or ‘faster-is-slower’) effect [300]: when individuals make choices that decrease their

personal speed, the speed of the system as a whole can increase.

Why, then, has selection favoured the WT in this system? By analogy to the

processes outlined above, we would expect any individual to improve its fitness by

‘defecting’, increasing its speed to move to the edge of the colony as quickly as possible

and so maximise its access to new territory at the expense of the slower-moving

cooperators. The answer to this question depends upon the density of the system.

At low densities, the collective effects that lead to cell verticalisation are not

present, and so intuitions about the relationship between cell speed and edge

colonisation hold true. Under these conditions, faster cell movement should

directly lead to improved resource acquisition. Consequently, the motility-associated

selection pressure is likely to depend upon the ‘typical’ community in which a given

strain finds itself. Strains that remain at comparatively low density (such as

those formed in environments with low nutrient availability) probably favour faster

individual movement, as we would intuitively expect.

However, at the community densities described in this chapter, rosette formation

can change the evolutionary dynamics of the system. In the case of the mixed

∆pilH/WT monolayer, a combination of defect-mediated segregation (chapter 5)

and cell growth leads to the formation of clonal patches within the monolayer. As

part of this demixing process, the ∆pilH cell type becomes clustered around comet

defects (figure 5.5). Rosettes formed from the collision of these comets are therefore

mainly composed of the ∆pilH cell type (figure 6.5c), leading to the preferential

exclusion of the defecting strain from the leading edge of the colony. This explains

why the cooperator, which avoids the formation of rosettes by moving slowly and

prudently, is ultimately able to overcome the defector and dominate the colony.

6.5.2 Role of verticalisation in defining biofilm properties

Verticalisation of biofilms has previously been demonstrated in both experiments

[297, 303, 304] and simulations [297]. The transition of growing colonies under agar
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from a 2D to a 3D geometry has also been widely studied [305–307]. In contrast

to the motility-driven verticalisation process described in this chapter however,

these processes are all based on cellular growth. During initial 2D expansion,

turgor pressure-based growth within a colony induces a pressure that drives the

outwards expansion of the colony. Due to exponential cell growth, the outer limit

of the colony must expand outwards at an accelerating rate. The frictional drag

associated with colony expansion increases with the expansion velocity, which,

combined with continuing cell growth, results in a gradual increase in the amount of

compression within the centre of the colony. Eventually, these compressive forces in

the initially 2D monolayer of cells become large enough to drive a buckling transition,

allowing cells within the centre of the colony to overcome their confinement and

reorient vertically [297, 305].

As previously speculated [304], P. aeruginosa is able to reduce these compressive

forces by using twitching motility to actively move from the centre of the colony,

allowing it to initially avoid this verticalisation effect. Of course, exponential growth

will eventually beat any constant reduction of the compressive forces at the centre

of the colony such as that offered by active expansion; the centre of WT colonies

are strongly verticalised (figure 2.5), apparently as a result of this growth-based

verticalisation process. The maximum velocity of cells at the leading edge of the

colony ‘outrunning’ the growth-based compression towards the centre of the colony

sets an upper limit on the width of the front, leading to the stable form of the

leading edge as a travelling wave (figure 2.6). Nevertheless, active motility still

greatly improves the expansion ability of the colony, with the WT expanding ≈10×

faster than the non-twitching ∆pilB mutant.

However, as shown in this chapter, excessive motility leads to a verticalisation

effect that is mechanistically similar to this growth-based process. Collision of

comets in ∆pilH monolayers results in localised areas of extremely high compression

and elastic strain associated with high nematic curvature, driving a similar 2D to

3D transition at the collision locations and causing the formation of rosettes. The
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consequences of this motility-based verticalisation are broadly similar to those of

growth-based verticalisation: cells cease movement in the horizontal direction, and

the expansion of the colony as a whole is retarded (≈4× in the case of ∆pilH

relative to the WT).

The dynamics of verticalisation are likely to be important for rod-shaped bacteria,

as they force a trade-off between horizontal biofilm expansion (allowing faster

colonisation of the surface) and vertical invasion (improving access to nutrients

supplied from above the surface). It has previously been shown that adjustment

of cellular length can alter the balance of these two processes in passively growing

systems [297], resulting in changes in colony behaviour similar to those predicted

by our simulations (figure 6.8). This suggests that evolution may tune both of

these parameters in tandem to set the overall dynamics of biofilm expansion and

verticalisation. It would be interesting to study the interplay between surface-based

motility, cell shape and biofilm structure in a wide range of bacterial species to

investigate how these properties tend to covary.
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Tiger got to hunt,

Bird got to fly;

Man got to sit and wonder, ‘why, why, why?’

Tiger got to sleep,

Bird got to land;

Man got to tell himself he understand.

— Kurt Vonnegut Jr., Cat’s Cradle 7
Conclusion

7.1 Thesis summary and impact

We have seen in this thesis a variety of interrelated findings regarding the properties

of the P. aeruginosa monolayer. In the introduction, an emphasis was placed upon

understanding the interaction between the collective motility of groups of organisms

and their evolution. We have seen two situations where this interplay appears to

be important: firstly, defect mediated segregation of mixed monolayers may shape

the evolution of cooperative behaviours. Secondly, selective slowing of high-speed

cells through rosette formation appears to set an evolutionary limit on the speed

of individual cells. These newly described processes are likely to set fundamental

physical constraints on microbial motility and the structure of biofilms.

Along the way, a number of interesting findings have also been made regarding

the physics of active matter. These include several observations that are, to the

best of our knowledge, the first of their kind:

• The first tracking of all (or most) individuals in a system displaying active

turbulence (chapter 4).
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• The first experimental realisation of the defect-centric flowfield of a trefoil,

as well as the first explicit experimental demonstration of a link between the

vortical lengthscale lv and the size of defect-centric flowfields (figure 4.7).

• The first description of highly non-Gaussian velocity statistics in a system

displaying active turbulence (figure 4.4a).

• The first experimental validation of the unmixing model of [268] (chapter 5).

• The first demonstration of a link between toplogical defects and the segregation

of mixed populations of agents (figures 5.5 and 5.8).

• The first observation of fusion and verticalisation of comet defects (figure 6.5).

• The first description of motility-induced verticalisation in simulations (figure

6.6).

To achieve these novel insights, we have leaned heavily upon the capabilities

of FAST to track individuals within high-density and high-motility communities.

Through its novel machine-learning based tracking algorithm, FAST simplifies the

tracking process while retaining the power needed to track individuals within these

challenging datasets. Its inbuilt flexibility should allow it to be adapted to a range

of other biofilm-based systems, allowing the link between individual and collective

behaviours to be analysed in a huge range of microbial settings.

7.2 A multiscale understanding of the ecology of
movement?

Two of these conclusions are rather counter-intuitive: undirected movement can drive

segregation of populations and excess individual speed slows collective movement.

These results are counter-intuitive principally because they violate our expectations

about the relationship between individual cells and the properties of the biofilm.

To resolve these paradoxes, we need to understand the system at a scale between
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Figure 7.1: Biofilms are multiscale structures. Only by understanding the properties of
the mesoscale active nematic can we fully understand the patterning and properties of
biofilms at the macroscale.

these two extremes: the active nematic (figure 7.1). Through an understanding

the physics of this mesoscale view of the system, the conflicts between the micro

and macroscale viewpoints are suddenly resolved.

This may prove to be a fruitful way of unravelling the organisation of biological

systems more broadly. We are now capable of monitoring the movement of individual

organisms in exquisite detail, not only in microbial communities but also in animals

[308]. Yet we still lack an understanding of how the movement of populations is

organised, and how this organisation emerges. By building up our understanding of

ecological systems through mesoscale coarse-grained approximations of individuals,

similar to our approximation of the monolayer as an active nematic, it may prove

possible to create ‘statistical’ models of population-level movements. Whether

such an approach could provide insights into the wider ecology of organisms

remains to be explored.

7.3 Outlook and future directions

We have only begun to understand how collective motility constrains evolution.

Currently, our understanding is limited by a lack of diversity in experimental systems,

and by technical limitations in existing systems. The research I have undertaken in
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this thesis has sought to push beyond these limitations, firstly by describing the

properties of a novel experimental model of active matter with ecological relevance,

and secondly by developing tools that allow the properties of this system to be

dissected at a range of scales. However, no research is undertaken in a vacuum, and

at the same time other research has extended our capabilities and understanding.

As noted in the introduction, we are currently unable to image the dynamics of

TFP in real time. This is a significant hole in our technical capabilities, preventing

us from directly analysing (for example) how pilus detachment contributes to the

anomalous velocity statistics discussed in chapter 4. However, several technologies

have recently been described which may allow these technical hurdles to be overcome;

iSCAT microscopy [309] and fluorophore labelling of engineered cystine residues [58]

have both been shown to allow imaging of pili in real time. As these technologies

mature, explicit testing of pilus-based physical models of twitching motility (such

as those described in [139, 143]) will become increasingly feasible. This should

allow the anomalous velocity statistics discussed in chapter 4 to be understood

in greater detail.

New technologies and systems are also continually being developed in the field

of active matter. As this field develops, the line between technology and nature

becomes ever more blurred; recent developments include the creation of light-

controlled swimming collectives of E. coli [310], robotic active matter systems [311]

and micromotors that use swimming bacteria as ‘fuel’ [312]. It seems only a matter

of time until practical real-world applications for active matter systems begin to be

realised. Particularly interesting from the perspective of this thesis has been the

recent description of a 2D active nematic formed from the growth of chain-forming

B. subtilis [186]. In this system, collision of multiple comet defects causes the

monolayer to pop out of the plane, remarkably similar to the mechanism of rosette

formation described in chapter 6. It will be interesting to see if the physics of this

system relates to the P. aeruginosa monolayer in other ways.
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7. Conclusion

With these and other advances, our understanding of the evolutionary forces

shaping collective motility will continue to deepen. Hopefully, insights will continue

to be generated when, much like two ∆pilH -laden comets, the worlds of active

matter and evolutionary biology collide.

187



188



Appendices

189





A
Normalisation of correlated displacement

spaces

From equation 3.1, we have:

ft+1 = ft +wt, (A.1)

where wt indicates a random vector drawn from the distribution N (µt,Σt) with

location µt and covariance matrix Σt.

µt can be calculated from the training feature displacement set ft,i simply by

finding the sample average for each feature, as for the uncorrelated case. To relax the

requirement thatΣt be diagonal, it can be estimated as the sample covariance matrix:

Σt = 1
nt − 1

nt∑
i=1

(∆ft,i − µt)(∆ft,i − µt)ᵀ, (A.2)

for each link in the training dataset, i to nt.

To generate the normalised feature space f̂t, we need to find some transformation

matrix B that can be applied to ft+1 and (ft+1−µt) to set Σt to the identity matrix

of equivalent dimension; this is also known as a whitening transformation. For

a given covariance matrix Σt there are theoretically an infinite number of whitening
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transformations, but FAST applies the uniquely-defined transformation based on

the eigendecomposition of Σt:

Σ = UΛU−1. (A.3)

Noting that Λ = Λ
1
2IΛ

1
2 and that U−1 = U ᵀ, the whitening transform B

is then given as:

B = Λ
1
2U ᵀ. (A.4)

The normalised feature space is then given as:

f̂t = Btft, (A.5a)

f̂t+1 = Bt(ft+1 − µt). (A.5b)

Feature reliability is not easy to define in this new space, asBt will not in general

preserve the orientation of the feature axes. This contrasts to the case when Σt was

diagonal, where Bt scaled the feature space parallel to each feature axis. However,

the volume of the space can still be defined as the volume of the Φ-parallelotope

corresponding to the transformed feature domain, i.e. the parallelotope with corners

at positions pt = BtEt where Et is the matrix with diagonal elements that are the

extent et,φ of each feature. The feature density is then given as:

dt = nt
− det(pt)

. (A.6)

The trackability kt and ambiguous link assignment probability p are then

calculated as for the uncorrelated case.
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